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Abstract
We propose a dual algorithm for the minimization of discrete nonconvex functionals. Our approach consists in introducing an auxiliary
variable, with explicit expression, that marks the edges and makes the regularization half-linear in the sense that the dual energy involves a
weighted total variation with respect to the main variable. Experimental results show that, whatever may be the perturbations to which an
image is subjected, the proposed algorithm provides piecewise constant restored images with neat edges.

1. Introduction
Image restoration consists in the reconstruction of an original image from a degraded observation of it. In the
variational framework, this leads to the minimization of a functional involving a data-fidelity term and a
regularization term [5]. Nonconvex energies have become a standard tool in image processing. Although numerical
tests revealed that nonconvexity gives better results than convexity, theoretical deficiencies on the existence of
solution and numerical intricacies restrict the algorithms that can be used.

We are interested in expanding the scope of edge-preserving convex approximations to nonsmooth nonconvex
TV-based regularization. Our proposal is related with the half-quadratic criterion [3], which provides a
deterministic algorithm minimizing a dual Laplacian-like functional, and with the weighted total variation [1].

2. The Discrete Minimization Problem
Let us denote an image as a two-dimensional matrix in the euclidean space X := RN×N . If u ∈ X , the discrete
gradient is a vector in Y = X × X given at each pixel by (∇u)i ,j =

(
(∇u)1

i ,j , (∇u)2
i ,j

)
, with

(∇u)1
i ,j =


ui+1,j − ui ,j

α
if i < N ,

0 if i = N ,
and (∇u)2

i ,j =


ui ,j+1 − ui ,j

α
if j < N ,

0 if j = N ,

where α > 0 is a scaling parameter that tunes the value of the gradient above which a discontinuity is detected.

We are interested in the minimization of the discrete objective functional

min
u∈X

J(u) :=
∑

1≤i ,j≤N
φ
(
| (∇u)i ,j |

)
+
λ

2

∑
1≤i ,j≤N

(
(Au)i ,j − fi ,j

)2
. (1)

In this setting, f ∈ X is the degraded data, u ∈ X is the underlying image to be recovered, A is the linear operator
modeling the degradation of u, φ is a so-called potential function, and λ ≥ 0 is a trade-off parameter.

3. Half-linear Regularization
Some requirements are imposed to have forward diffusion (smoothing) in quasi-constant areas and
backward diffusion (enhancement) around edges:

(A1) φ : [0,+∞)→ [0,+∞) strictly increases on (0,+∞), with φ(0) = 0.

(A2) φ is twice continuously differentiable on (0,+∞).

(A3) φ′ strictly decreases on (0,+∞).

(A4) limt→+∞ φ′(t) = 0.

(A5) limt↓0+ φ′(t) = M , with 0 < M < +∞.

Formally, from the Euler-Lagrange equation

−div

(
φ′(|∇u|) ∇u

|∇u|

)
+ λA∗ (Au − f ) = 0,

a qualitative reasoning on the above conditions in terms of a weighted TV regularizer is developed:

φ′ acts as a weight for the total variation or, equivalently, for the mean curvature.

(A4) implies that the Euler-Lagrange equation behaves as the usual TV at pixels in an homogeneous area.

(A5) penalizes the diffusion in the gradient direction at pixels close to edges and, thus, edges are preserved.

Some examples of potential functions satisfying (A1)–(A5) are

φ1(t) =
t√

1 + t2
, φ2(t) =

t

1 + t
, φ3(t) = ln(1 + t), φ4(t) = (1 + t)γ, γ ∈ (0, 1).

φ(t) vs t = |∇u| φ′(t) vs t = |∇u|

4. The Proposed Dual Algorithm
In view of (2), we introduce the following augmented energy by means of a dual variable ω:

J∗(u, ω) =
∑

1≤i ,j≤N

(
ωi ,j | (∇u)i ,j + ψ

(
ωi ,j
) )

+
λ

2

∑
1≤i ,j≤N

(
(Au)i ,j − fi ,j

)2
,

where ω = (ωi ,j)1≤i ,j≤N , with ωi ,j ∈ (0,M ] for any i , j ∈ {1, . . .N}. Then, the primal problem (1) can be
rewritten as

min
u∈X

J(u) = min
u∈X

{
min

ω∈(0,M ]N×N
J∗(u, ω)

}
= min

u∈X
J∗
(
u, φ′(|∇u|)

)
.

We propose the following dual algorithm that alternates minimizations over u and ω:

u0 = f
repeat

ωn+1 = φ′(|∇un|)
un+1 = arg minu∈X J∗

(
u, ωn+1

)
until convergence

The convex problem minu∈X J∗(u, ωn+1) can be solved, for instance, by Chambolle’s projection algorithm [2]. We
proved in [4] the convergence of the proposed approach.

Theorem (Main dual theorem)
Let φ satisfy (A1) – (A5), then there exists a strictly convex and strictly decreasing function
ψ : (0,M ]→ [0, β), with β = limt→+∞

(
φ(t)− tφ′(t)

)
, such that

φ(t) = min
ω∈(0,M ]

(ωt + ψ(ω)) = tφ′(t) +
(
ψ ◦ φ′

)
(t), ∀t ≥ 0. (2)

5. Experimental Results
The role of the weight ω as edge detector

Clean data α = 20 α = 50 Noisy data α = 30

Figure : Weights associated to the final restored images obtained from clean Book image and from noisy Phantom image (noise s.d.
σ = 10). The dual variable perfectly detects image features and it provides neat edges. As α increases, more gradients are penalized.

Applications of the proposed algorithm in image restoration

PSNR = 21.97 PSNR = 30.44 PSNR = 28.14 PSNR = 33.69

Figure : Denoising experiment on piecewise constant Phantom image corrupted with noise s.d. σ = 25 and on textured House image
corrupted with noise s.d. σ = 10. In all cases, the algorithm provides piecewise constant images with neat edges and closed regions.

PSNR = 20.27 PSNR = 24.87 PSNR = 24.64 PSNR = 25.01

Figure : Deconvolution experiment on piecewise constant Phantom image convolved with Gaussian kernel s.d. σ = 5 and on Cameraman
image convolved with Gaussian kernel s.d. σ = 3. Once more, the algorithm provides segmented-restored solutions from blurred data.

Performance comparison on image denoising

Image
Noisy image Chambolle Split Bregman Half-quadratic Ours

RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR
Book 17.38 24.65 7.21 31.50 8.09 30.44 7.76 31.06 6.99 31.88

Cameraman 16.81 24.91 9.00 29.64 10.04 28.68 8.92 29.91 8.26 30.46
Phantom 14.24 26.41 7.20 32.33 9.22 30.03 5.77 34.21 5.29 35.31

Avg. 16.14 25.32 7.80 31.16 9.12 29.72 7.48 31.73 6.85 32.55

Table : For each image, the averages of the RMSE and the PSNR values over s.d. σ ∈ {5, 10, 15, 20, 25, 30} are displayed.

Noisy image Chambolle Split Bregman Half-quadratic Ours

Figure : Denoising experiment on Phantom image corrupted with noise s.d. σ = 30. All results except ours suffer from over-smoothing
and, furthermore, some image features have disappeared. On the contrary, our result looks clear and best approaches the ground truth.

Extension to color images

Ground truth Noisy (PSNR = 24.62) Chambolle (PSNR = 31.73) Ours (PSNR = 32.48)

Figure : Denoising of color image corrupted with noise s.d. σ = 15. Our result better preserves edges and it looks clearer. Indeed, the
letters from the cover book are blurred in the Chambolle’s result.

References
[1] G. Aubert, A. El Hamidi, C. Ghannam, and M. Ménard.

On a class of ill-posed minimization problems in image processing.
J. Math. Anal. Appl., 352(1):380–399, 2009.

[2] A. Chambolle.
An algorithm for total variation minimization and applications.
J. Math. Imaging Vis., 20:89–97, 2004.
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6. Conclusions
We have introduced the half-linear regularization for dealing with the minimization of discrete nonsmooth nonconvex energy functionals.

The proposed approach introduces a closed-form dual variable that correctly detects edges and preserves them from smoothing.

We have proposed a dual algorithm that consists in alternating minimization over the primal and the dual variables.

The experimental results have shown that our method provides piecewise constant images with neat edges from arbitrary noisy and blurred data.

Extensions and further developments of our approach have been considered in [4].


