

² Universitat de les Illes Balears, Spain

Joan Duran^{1, 2}

Vectorial TV Regularization

$$\hat{u} = \arg\min_{u} G_f(u) + \alpha \, TV(u)$$

- Unknown $u: \Omega \to \mathbb{R}^k$
- Data term $G_f(u)$
- Regularization parameter α
- Total variation TV(u)

What is the best TV(u) for multichannel images?

The Jacobi matrix at each pixel defines a 3d tensor. Regularize tensor with mixed matrix norm!

Framework

- Penalize each dimension of *Du* with a different norm!
- For instance, penalize the color dimension with ℓ^p , the resulting 2d matrix with ℓ^q along the derivative dimension, and the resulting vector with ℓ^r

 $(\ell^p(col), \ell^q(der), \ell^r(pix)) = \ell^{p,q,r}(col, der, pix)$

With •

$$\|A\|_{p,q,r} = \left(\sum_{i=1}^{N} \left(\sum_{j=1}^{M} \left(\sum_{k=1}^{C} |A_{i,j,k}|^p\right)^{q/p}\right)^{r/q}\right)^{1/q}$$

Input

 $\rho^{2,1,1}$

 $\rho \infty, 1, 1$

- Of further interest: Schatten-q norms
- The whole framework immediately extends to nonlocal TV (c.f. [1])

Singular Vectors

- Singular vectors (introduced in [8]) can be reconstructed exactly
- They reveal the preferred structure of the regularization
- For denoising

 $\lambda u_{\lambda} \in \partial TV(u_{\lambda})$

Method	Singular Vectors Channels	Properties
$\ Du\ _{1,1,1}$	$u_k = -c_k^1 \ \partial_x l_k^1(x) - c_k^2 \ \partial_y l_k^2(y)$	$c_k^r \in \{+1, -1, 0\}.$
$\ Du\ _{2,1,1}$	$u_k = -c_k^1 \ \partial_x l^1(x) - c_k^2 \ \partial_y l^2(y)$	The piecewise linear functions l^r do not depend on k , $ c_{:}^r _2 = 1$.
$\ Du\ _{\infty,1,1}$	$u_k = -c_k^1 \ \partial_x l^1(x) - c_k^2 \ \partial_y l^2(y)$	The piecewise linear functions l^r do not depend on $k, c_k^r \in \{+1, -1, 0\}$.

Function l_k are piecewise linear with the linearity changing at x only if $|l_k(x)| = 1$.

The infinity norm introduces the strongest coupling!

Mixed Matrix Norms for Vector Valued Total Variation Regularization Daniel Cremers¹

Michael Moeller¹

Catalina Sbert²

¹ Technical University Munich, Germany

Functions whose divergence generates singular vectors

 $\rho^{1,1,1}$

Unification

 $\rho^{2,1,1}$

[1]] J.	[
	no	n
	ΕN	1
[2]] P.	
	res	st
	Pro)
[3]	1 X I	
Ľ	vai	ri
	Pro	ר
ſΔ	1 G	
נד. [ק]	ј С 1 Т	•
[J	」」. Lin	י אר
	nn	
٦C	η 1 c	•
ַס]). 	,
	ge	n
	ap	p
r —		n
[/	JΒ	•
	vai	ſ
_	lm	a
[8]] N	1.
	CO	n
	An	а
-		^

Background	Formula	Our Notation	
Isotropic uncoupled	$\int_{\Omega} \sum_{i} \sqrt{(\partial_x u_i)^2 + (\partial_y u_i)^2} dx dy.$	$\ell^{2,1,1}(der,col,pix)$	
Anisotropic uncoupled	$\int_{\Omega} \sum_{i} \partial_{x} u_{i} + \partial_{y} u_{i} dx dy.$	$\ell^{1,1,1}(der,col,pix)$	
Proposed in [2]	$\sqrt{\sum_{i} \left(\int_{\Omega} \sqrt{(\partial_{x} u_{i})^{2} + (\partial_{y} u_{i})^{2}} dx dy \right)}$	$\ell^{2,1,2}(der, pix, col)$	
Anisotropic version	$\sqrt{\sum_{i} \left(\int_{\Omega} \partial_{x} u_{i} + \partial_{y} u_{i} dx dy \right)}$	$\ell^{1,1,2}(der, pix, col)$	
[3, 4]	$\int_{\Omega} \sqrt{\sum_{i} (\partial_{x} u_{i})^{2} + (\partial_{y} u_{i})^{2}} dx dy.$	$\ell^{2,2,1}(col, der, pix)$	
Anisotropic version 1	$\int_{\Omega} \sqrt{\sum_{i} (\partial_x u_i + \partial_y u_i)^2} dx dy.$	$\ell^{1,2,1}(der, col, pix)$	
Anisotropic version 2	$\int_{\Omega} \sqrt{\sum_{i} (\partial_{x} u_{i})^{2}} + \sqrt{\sum_{i} (\partial_{y} u_{i})^{2}} dx dy.$	$\ell^{2,1,1}(col, der, pix)$	
Related to [5]	$\int_{\Omega} \max_{i} \partial_{x} u_{i} + \max_{i} \partial_{y} u_{i} dx dy.$	$\ell^{\infty,1,1}(col, der, pix)$	
Isotropic version	$\int_{\Omega} \sqrt{(\max_i \partial_x u_i)^2 + (\max_i \partial_y u_i)^2} dx dy.$	$\ell^{\infty,2,1}(col, der, pix)$	
Isotropic variant	$\int_{\Omega} \max_{i} \sqrt{ \partial_{x} u_{i} ^{2} + \partial_{y} u_{i} ^{2}} dx dy.$	$\ell^{2,\infty,1}(col,der,pix)$	
$[4,\!6]$	$\int_{\Omega} \left\ \left(\begin{array}{c} (\partial_x u_i)_{i=1,\dots,N} \\ (\partial_y u_i)_{i=1,\dots,N} \end{array} \right) \right\ _* dx \ dy,$	$(S^1(col, der), \ell^1(pix))$	
[4,7]	$\int_{\Omega} \left\ \left(\begin{array}{c} (\partial_x u_i)_{i=1,\dots,N} \\ (\partial_y u_i)_{i=1,\dots,N} \end{array} \right) \right\ _{S^{\infty}} dx dy,$	$(S^{\infty}(col, der), \ell^1(pix))$	

Denoising

Method/Avg. PSNR on	McM (18 img)	Kodak (24 img)	BSDS (20 img)	ARRI (8 img)
$\ell^{1,1,1}(der, col, pix)$	31.15	31.39	31.37	30.31
$\ell^{2,1,1}(der, col, pix)$	31.90	32.32	32.40	31.24
$\ell^{2,2,1}(col, der, pix)$	31.65	32.00	32.21	31.01
$\ell^{\infty,1,1}(col,der,pix)$	31.92	32.76	32.99	31.38
$\ell^{\infty,2,1}(col,der,pix)$	31.72	32.52	32.90	_
$\ell^{2,\infty,1}(\operatorname{der},\operatorname{col},\operatorname{pix})$	31.36	32.19	32.59	31.05
$\ell^{2,\infty,1}(col,der,pix)$	30.92	31.27	31.59	30.34
$(S^1(col,der),\ell^1(pix))$	32.19	32.53	32.71	31.30
$(S^\infty(col,der),\ell^1(pix))$	31.01	31.42	31.66	30.46

Inpainting

 $\overline{\mathrm{TV}} \,\ell^{2,\infty,1}(pcd)$

TV (S^1, ℓ^1)

TV (S^{∞}, ℓ^1)

References

- Duran, M. Moeller, C. Sbert, and D. Cremers. A novel framework for nlocal vectorial total variation based on I^{p,q,r}-norms. Accepted at 1MCVPR 2015.
- Blomgren, and T. Chan. Color TV: Total variation methods for toration of vector valued images. IEEE Transactions on Image ocessing, 7:304-309, 1998.
- Bresson and T. Chan. Fast dual minimization of the vectorial total riation norm and applications to color image processing. Inverse oblems and Imaging 2(4):255-284, 2008.
- Sapiro. Vector-valued active contours. IEEE CVPR 1996, pp. 680-685. Miyata and Y. Sakai. Vectorized total variation defined by weighted finity norm for utilizing inter channel dependency. IEEE ICIP 2012, 3057-3060.
- Lefkimmiatis, A. Roussos, M. Unser, and P. Maragos. Convex neralizations of total variation based on the structure tensor with plications to inverse problems. SSVM 2013, Lecture Notes on mputer Science, pp. 103-117.
- Goldluecke, E. Strekalovskiy, and D. Cremers. The natural total iation which arises from geometric measure theory. Siam Journal on aging Sciences 5(2):537-563, 2012.
- Benning and M. Burger. Ground states and singular vectors of nvex variational regularization methods. Methods and Applications of alysis 20(4):295-334, 2013.