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Abstract
We propose a variational model for which pansharpening is defined as an optimization problem minimizing a cost function with nonlocal
regularization. We incorporate a new term preserving the radiometric ratio between the panchromatic and each spectral band. The resulting
model is channel-decoupled, thus permitting the application to misregistered spectral data. The experimental results illustrate the superiority
of the proposed method with respect to the state of the art to preserve spatial details, reduce color artifacts, and avoid aliasing.

1. Introduction
Many Earth observation satellites decouple the acquisition of a panchromatic image at high spatial resolution from
the acquisition of a multispectral image at lower spatial resolution. Pansharpening is the fusion process by which a
high-resolution multispectral image is inferred.

Panchromatic Red, green, blue, near-infrared Low-resolution multispectral

Pansharpening has been an intensive field of research [1]. Most of state-of-the-art methods need all data to be
geometrically aligned. Unfortunately, this is not satisfied by satellite imagery, for which different spectral bands are
not co-registered and their registration previously to pansharpening is not recommendable due to strong aliasing.

We propose a nonlocal variational model for pansharpening. Compared to [2], the classical assumption on the linear
dependence of the panchromatic and spectral components is replaced by a radiometric constraint. The minimization
can be performed independently for each band, thus permitting the application to misregistered spectral data.

2. Variational Formulation of Pansharpening
Let Ω ⊂ RM be an open and bounded domain and C , the number of spectral bands. The satellite data consist of

a high-resolution panchromatic image P : Ω→ R,

a low-resolution multispectral image uS : S → RC defined on a sampling grid S ⊆ Ω.

The high-resolution multispectral image to be inferred is denoted by u : Ω→ RC .

Inverse Problem. The most common image formation model, pioneered by Ballester et al [3], assumes that

uS
k = (κk ∗ uk)↓s + ηk , ∀k ∈ {1, . . . ,C}, (1)

where ↓s denotes the subsampling operator by a factor s (for most satellites, s = 4), κk is the impulse response for
the kth spectral band, and ηk is i.i.d. zero-mean Gaussian noise.

Panchro-Spectral Constraint. Ballester et al [3] further incorporated the following constraint:

P(x) =
C∑

k=1

αkuk(x), ∀x ∈ Ω,

where {αk} are mixing coefficients. Importantly, it is assumed here that all spectral bands are co-registered.

Classical Regularization Strategies. Ballester et al [3] proposed to regularize the solution of (1) by aligning all
level lines of P and each uk . Several variants of the total variation regularization have been also used so far [1].

Nonlocal Regularization. Nonlocal methods use a similarity measure relating points in the whole domain having
similar geometry and texture. In [2], we introduced nonlocal regularization into pansharpening through the energy∫

Ω

∫
Ω

(uk(y)− uk(x))2 ωP(x, y) dy dx, (2)

where the similarity distribution ωP : Ω× Ω→ R is

ωP(x, y) =
1

Υ(x)
exp

(
−d (P(x),P(y))

h2

)
. (3)

Υ(x) is a normalization factor and d(P(x),P(y)) computes the distance between neighborhoods around x and y.

3. Nonlocal Channel-Decoupled Model
Radiometric Constraint. Let Pk be the panchromatic in the reference of uk and PS

k : S → R, its decimation as

in (1). Let P̃k : Ω→ R and ũk : Ω→ R be the extensions of PS
k and uS

k to Ω by interpolation. We encourage that

uk(x)

Pk(x)
=

ũk(x)

P̃k(x)
, ∀x ∈ Ω, ∀k ∈ {1, . . . ,C}, (4)

which is equivalent to

uk(x)− ũk(x) =
ũk(x)

P̃k(x)

(
Pk(x)− P̃k(x)

)
, ∀x ∈ Ω, ∀k ∈ {1, . . . ,C}.

Thus, we force the high frequencies of each spectral band to coincide with those of the panchromatic. Importantly,
we require each Pk to be registered with the kth channel, but nothing about the co-registration of spectral data.

The Energy Functional. We propose the following channel-decoupled energy functional:

J2(u) =
C∑

k=1

J2(uk) (5a)

such that

J2(uk) =
1

2

∫
Ω

∫
Ω

(
uk(y)− uk(x)

)2
ωPk

(x, y) dy dx +
µs2

2

∫
Ω

ΠS ·
(
κk ∗ uk(x)− uΩ

k (x)
)2

dx

+
δ

2‖Pk‖2

∫
Ω

(
uk(x)P̃k(x)− ũk(x)Pk(x)

)2
dx.

(5b)

The first term corresponds to the nonlocal regularization (2) with the weights ωPk
defined in (3).

The second term is the variational formulation of (1), where ΠS =
∑

x∈S δx is a Dirac’s comb defined by the

sampling grid S and uΩ : Ω→ RC is an arbitrary extension of uS as a continuous function from S to Ω.

The third term is the Lagrangian formulation associated to the radiometric constraint (4).

Using standard arguments from convex analysis, we prove that the minimization of (5) admits an unique solution.

Numerical minimization. Using the gradient descent method, the solution is obtained by iterating the equation

u
(n+1)
k (p) = u

(n)
k (p)− τ

∑
q∈I

(
u

(n)
k (p)− u

(n)
k (q)

)(
ωPk

(p,q) + ωPk
(q,p)

)
− τµs2

(
K>k ΠS

(
Kku

(n)
k − uΩ

k

))
(p)− τ δ

‖Pk‖2

(
u

(n)
k (p)P̃k(p)− ũk(p)Pk(p)

)
P̃k(p),

(6)

where n ≥ 0 is the iteration number and τ is the artificial time step in the descent direction. Here, Kk is the
blurring matrix associated to κk and ΠS is implemented by taking every fourth pixel to be one along each direction.

For computational purposes, the nonlocal term is limited to interact between pixels at a distance given by νr > 0, i.e.

ωPk
(p,q) =


1

Υ(p)
exp

− 1

h2

∑
{t:‖t‖∞≤νc}

|Pk(p + t)− Pk(q + t)|2
 if ‖p− q‖∞ ≤ νr ,

0 otherwise,

where νc > 0 determines the size of a window centered at 0 and Υ(p) is the normalization factor. To avoid an
excessive weighting of the reference pixel, ωPk

(p,p) is set to the maximum of the weights.

Proposed Algorithm. Since (6) decouples for each spectral component, we can proceed as follows:

i) Superimpose the panchromatic image, which hardly contains aliasing, on the reference of uk .

ii) Compute the weight function ωPk
on the registered panchromatic.

iii) Solve the pansharpening problem for uk by iterating (6) until convergence.

iv) Superimpose all high-resolution spectral bands on a common geometry for visualization purposes.

We avoid resampling the aliased spectral components and the algorithm applies on the original data instead.

4. Experimental Results
We compare the performance of the proposed model with some of the best state-of-the-art pansharpening techniques according to [1].

Data simulated from full-color aerial images at 30 cm: panchromatic obtained by averaging the reference color channels; low-resolution multispectral components
obtained by translating the reference color channels and then filtering them with Gaussian kernel of standard deviation 1.7 followed by subsampling of factor s = 4.

All techniques except ATWT, GLP, and ours require co-registered spectral components.

Methods RMSE SAM SSIM

Reference 0 0 1

Co-registered spectral data
Brovey [4] 2.7954 1.7668 0.9937
BDSD [5] 1.9628 2.0636 0.9979
PRACS [6] 2.3621 1.5384 0.9976
ATWT [7] 2.2277 1.5484 0.9980
AWLP [8] 2.0889 1.4481 0.9982
GLP [9] 2.0919 1.3451 0.9980

P+XS [3] 1.9259 1.7746 0.9985
NLV [2] 1.6488 1.3790 0.9987

Ours 1.7785 1.5380 0.9984

Misregistered spectral data
ATWT [7] 2.1991 1.5669 0.9983

GLP [9] 2.2191 1.5535 0.9980
Ours 1.2539 0.9379 0.9997

Average of each metric over the dataset. RMSE
accounts for spatial distortion, SAM measures the

spectral distortion, and SSIM measures loss of
correlation, luminance, and contrast distortion

Dataset of full-color aerial images

Reference Brovey [4] BDSD [5] PRACS [6] ATWT [7]

AWLP [8] GLP [9] P+XS [3] NLV [2] Ours

All results except ours are affected by aliasing, e.g. see the alias pattern along the light brown wall. The spots on the white cars, the reduction of the
chromatic saturation, and the colors of the objects exceeding their contours also compromise the performances of all the other methods

5. Conclusions
We have introduced a nonlocal channel-decoupled variational model for pansharpening.

The method does not need the spectral data to be co-registered and suppresses any assumption on the linear dependence of the panchromatic and spectral modalities.

The proposed method performs the best on simulated data compared to state-of-the-art techniques.
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