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Abstract

1. Introduction 3. Proposed Super-Resolution Method

The goal of super-resolution is to fuse several low-resolution frames {fn},/yzl into a single one u with increased 1) Pre-processing.

resolution. The classical image formation model is given by o Low-resolution data upsampled by bicubic interpolation, {fn}llyzl with reference frame f,,.

fo = DnBpWhu +en, Vne{l,..., N}, o Optical flows W.! between ﬁqu and each f,, n # ny,, computed by Brox et al.’s method [7].

where D, is a decimation operator, B, a space-variant blur operator, W, a backward warping operator and ¢, the
realization of i.i.d. zero-mean noise. In order to compute u, super-resolution methods need to establish a correspon-
dence between the reference image and each low-resolution frame, remove the aliasing and perform deblurring in

2) Upsampling stage.

o For each patch P of the reference image ﬁ,u, proceed as follows:

addition to upsampling. Mathematically, this is an ill-posed inverse problem. (i) Consider the motion-compensated extension of P to the temporal dimension:
e How do super-resolution methods handle motion? N -
. L . . . . P=|Jf(P+W,(P).
- Classical variational methods [1], even deep learning based approaches [2, 3], estimate first the motion between

frames using dense optical flow techniques, which benefit from the continuity in motion and exposure. Then, n=1

the algorithms combine for each pixel the information in its estimated trajectory. (i) Look for the K extended patches closest to 7> minimizing the 3D distance

- Optical flow techniques do not give a perfectly accurate solution and have trouble in identifying occlusions. LN T ~ T 5
Alternative super-resolution methods [4, 5] do not use motion explicitly but include non-linear filters exploiting d(P, Q) = Z |fa(P + W, (P)) — fa(Q + W, (Q))][|"
both spatial and temporal redundancy. n=1

o How do super-resolution methods handle upsampling and deblurring stages? (iii) Decompose selected 3D prisms w.r.t. frames and consider the group of K - N 2D image patches:

~

~ T | B B
- Since Dy, and B, commute, super-resolution is commonly decoupled in upsampling and deblurring stages [4, 5]. Np = {fn(Pk + W, (Pk)) = fa(Pn) [n=1,....N, k=1,..., K} :

Such a strategy is sub-optimal to the joint treatment, but leads to simplified algorithms. (iv) Define averaging weights in terms of the 2D Euclidean distance

(Fa(P), ol Pr)) = exp (=3 [ Fau(P) = FaPa)|7) , Yal Pr) € N

- Variational methods usually compute the super-resolved image at once [1, 6].

2 ) Ove rview & Contn bUt|OnS with h > 0 being a filtering parameter that depends on aliasing and noise statistics.
We present a two-stage video super-resolution method using both cross-frame motion and spatio-temporal redundancy. (v) Compute upsampled image at P using only original low-resolution values:
n _ . . . . R 1 ~ ~ ~
@ Non-linear patch-based filter to build an upsampled, but still blurry, image. i (P) = = Z w(fnu(P), fn(Pn)) (D(Pn) . fn(Pn)),
- Combine selected patches from several frames, not necessarily belonging to the same pixel trajectory. Z 7 (PEN
- Motion-compensated 3D distance, robust to noise and aliasing, used to select candidate patches. with normalization matrix C, = ZE(Pn)Epr(?,;U(P)’ E(Pn)) D(P,).

2D image patches finally averaged in terms of Euclidean distance, robust to flow inaccuracies and occlusions.

o Pixel values of u obtained by patch aggregation.

Sampling grid used to allow only averaging original low-resolution pixel values.

e Image deconvolution variational model combining total variation and nonlocal regularizations. 3) Deconvolution stage. Solve the TV+NL regularization based energy minimization problem

- NL preserves textures, avoids cartoon-like solutions and favours pleasant visual results. min A||Vu|[1 + || Vgullp + %Hﬁ— Bu||%.
u

- TV removes grid/zipper effects which might be reproduced by NL interactions. . — . . .
grid/zipp = P y o NL gradient operator defined as (Vu); = /@ (uj — u;) with sparse bilateral weights:

! Ll = ll2 1 ~ ~ 2\ - -
o 4 o® (a1 = 718) &0 (= Celelwoe 1Give = Giael?) i1 = lloe < v,
0 otherwise.

- T, is the normalization factor, hc and hs are filtering parameters.
- Uy and v¢ are the size of the research window and of the similarity patches.

o Saddle-point formulation on which primal-dual algorithm [3] applies:

minmax (Vu, p) + (Vgu, 6) = 0p(p) — dq(a) + 317 — Bull.

- 0p /@ indicator function of P = {p | max; \/(pll)2 + (p?)? < )\} and Q = {q | max; \/2:](q,-j)2 < ,u}.
op + 0o — pointwise Euclidean projections onto L2 balls.
%Hﬁ— BuH% — computed using FFT.

Bicubic Upsampled Super-resolved

lllustration of the different parts of our method with sampling factor 4 and 15 frames. The upsampling stage eliminates the aliasing but

. . . . - Proximity operator of
does not revert the blur. The deconvolution part produces a sharp image with enhanced details.

4. Experimental Results

@ Low-resolution frames simulated by Gaussian convolution of s.d. 0.75 and 1.6 followed by subsampling of factors 2 and 4, respectively. White Gaussian noise of s.d. 2 was added.
@ All color images were transformed to YCbCr space. Super-resolution applied only to the luminance Y, while the chrominance channels Cb and Cr were directly upsampled by bicubic interpolation.

Bic. | [2] | [1] | [3] | Ours | Bic. | [2] 1] 3] Ours
RMSE SSIM
08 119.6917.1314.55 25.0712.99 0.9334/0.9543 0.9791|0.8759 0.9835
B 10.15 7.83 | 6.22 114.08 5.07 0.9229 0.9571/0.9811|0.8650 0.9846
@k 12.01] 9.70 | 8.63 |21.02| 8.27 |0.9407 0.9694 0.9800 0.8377 0.9814
== 6.78  4.92|4.6310.65 3.72 0.9860 0.9896 0.9925 0.9612|0.9948
¥y 8.27 630 | 6.89 12.90| 5.42 0.9693 0.9777 0.9817|0.9228 0.9881

.11.38 9.18 | 8.18 |16.74 7.09 0.9505|0.9696 0.9829 0.8925 0.9865

Numerical results with sampling factor 2 and 15 frames.

Original Bicubic Dong et al. [2] Unger et al. [1] . Liao et al. [3] Ours

Crops of the results with sampling factor 2 and 15 frames. Only the proposed method is able to recover the correct direction of the curtains, modified by the aliasing.

Bic. | [2] | [1] | [3] | Ours | Bic. | [2] [1] 3] Ours
RMSE SSIM
88 120.79|27.18/25.50/24.14 | 24.41 0.7201/0.7972| 0.8739 |0.8787 0.8794
W8 16.57 15.72|/14.05| 13.58 |13.13 0.7025 0.7494 0.8453 0.8503 0.8641
B8 20.73/18.8316.79/16.67  16.72 0.71240.7336 0.8697 0.8627  0.8610
: 14.43/11.75/10.52| 10.68 1 10.41 0.9038|0.9407 | 0.9680 0.9623 0.9685
%5 15.97/13.35/12.85| 14.10 |12.34 0.8540 0.8944 | 0.9156 0.8804 0.9165

ve. 19.50 17.37 15.94 15.83 15.40 0.7786 0.8331 0.8945 0.8869 0.8979 20 i‘h-:..:" e 4\ ’

Original Bicubic Dong et al. [2] Unger et al. [1] Liao et al. [3] Ours

Crops of the results with sampling factor 4 and 15 frames. All methods have problems in super-resolving the faces correctly. Ours is the only one not creating artifacts.

Numerical results with sampling factor 4 and 15 frames.

Bic. | [2] | [1] | [3] | Ours | Bic. | [2] 1] [3] | Ours
RMSE SSIM
288 1 29.45/26.82|25.00 23.47 | 23.62 0.72410.8006 0.8890 |0.8866 0.8920
Wi 1833 17.57 16.00 15.69 15.24 0.6879 0.7351 0.8393 0.8289 0.8453
8| 20.9919.1918.31| 17.19 17.11 0.7053 0.7776 0.85550.8461 0.8518
14.26/11.59 10.81| 9.64 | 9.04 0.9052|0.9414 0.9682 |0.9676|0.9755
% 15.78/13.11/14.50| 14.56 1 12.20 0.8591|0.8976  0.9026 0.8626 0.9175
.119.7617.66 | 16.92| 16.11 115.44|0.7763 0.8305| 0.8909 0.8784 0.8964

Numerical results with sampling factor 4 and 30 frames. Original Bicubic Dong et al. [2] Unger et al. [1] Liao et al. [3] Ours
Crops of the results with sampling factor 4 and 30 frames. All video super-resolution methods except ours experience difficulties dealing with occlusions.
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