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Abstract
We present a novel two-step video super-resolution method. For the upsampling stage, we design a non-linear filter that takes into account patch similarities, automatically
correcting flow inaccuracies and avoiding the need of occlusion detection. The selection of candidate patches depends on a motion-compensated 3D distance which is
robust to noise and aliasing. The resulting upsampled image is then deblurred through a variational formulation that combines total variation and nonlocal regularizations.
The experimental results demonstrate the state-of-the-art performance of the proposed approach.

1. Introduction
The goal of super-resolution is to fuse several low-resolution frames {fn}Nn=1 into a single one u with increased
resolution. The classical image formation model is given by

fn = DnBnWnu + εn, ∀n ∈ {1, . . . ,N},
where Dn is a decimation operator, Bn a space-variant blur operator, Wn a backward warping operator and εn the
realization of i.i.d. zero-mean noise. In order to compute u, super-resolution methods need to establish a correspon-
dence between the reference image and each low-resolution frame, remove the aliasing and perform deblurring in
addition to upsampling. Mathematically, this is an ill-posed inverse problem.

How do super-resolution methods handle motion?

- Classical variational methods [1], even deep learning based approaches [2, 3], estimate first the motion between
frames using dense optical flow techniques, which benefit from the continuity in motion and exposure. Then,
the algorithms combine for each pixel the information in its estimated trajectory.

- Optical flow techniques do not give a perfectly accurate solution and have trouble in identifying occlusions.
Alternative super-resolution methods [4, 5] do not use motion explicitly but include non-linear filters exploiting
both spatial and temporal redundancy.

How do super-resolution methods handle upsampling and deblurring stages?

- Since Dn and Bn commute, super-resolution is commonly decoupled in upsampling and deblurring stages [4, 5].
Such a strategy is sub-optimal to the joint treatment, but leads to simplified algorithms.

- Variational methods usually compute the super-resolved image at once [1, 6].

2. Overview & Contributions
We present a two-stage video super-resolution method using both cross-frame motion and spatio-temporal redundancy.

Non-linear patch-based filter to build an upsampled, but still blurry, image.

- Combine selected patches from several frames, not necessarily belonging to the same pixel trajectory.

- Motion-compensated 3D distance, robust to noise and aliasing, used to select candidate patches.

- 2D image patches finally averaged in terms of Euclidean distance, robust to flow inaccuracies and occlusions.

- Sampling grid used to allow only averaging original low-resolution pixel values.

Image deconvolution variational model combining total variation and nonlocal regularizations.

- NL preserves textures, avoids cartoon-like solutions and favours pleasant visual results.

- TV removes grid/zipper effects which might be reproduced by NL interactions.

Bicubic Upsampled Super-resolved

Illustration of the different parts of our method with sampling factor 4 and 15 frames. The upsampling stage eliminates the aliasing but
does not revert the blur. The deconvolution part produces a sharp image with enhanced details.

3. Proposed Super-Resolution Method
1) Pre-processing.

Low-resolution data upsampled by bicubic interpolation, {f̃n}Nn=1 with reference frame f̃nu.

Optical flows W>n between f̃nu and each f̃n, n 6= nu, computed by Brox et al.’s method [7].

2) Upsampling stage.

For each patch P of the reference image f̃nu, proceed as follows:

(i) Consider the motion-compensated extension of P to the temporal dimension:

P =
N⋃
n=1

f̃n
(
P + W>n (P)

)
.

(ii) Look for the K extended patches closest to P minimizing the 3D distance

d
(
P ,Q

)
=

N∑
n=1

∥∥f̃n(P + W>n (P))− f̃n(Q + W>n (Q))
∥∥2
.

(iii) Decompose selected 3D prisms w.r.t. frames and consider the group of K · N 2D image patches:

NP =
{
f̃n(Pk + W>n (Pk)) =: f̃n(Pn) | n = 1, . . . ,N , k = 1, . . . ,K

}
.

(iv) Define averaging weights in terms of the 2D Euclidean distance

ω
(
f̃nu(P), f̃n(Pn)

)
= exp

(
− 1
h2

∥∥f̃nu(P)− f̃n(Pn)
∥∥2
)
, ∀f̃n(Pn) ∈ NP ,

with h > 0 being a filtering parameter that depends on aliasing and noise statistics.

(v) Compute upsampled image at P using only original low-resolution values:

û (P) =
1

Cn
·

∑
f̃n(Pn)∈NP

ω
(
f̃nu(P), f̃n(Pn)

)(
D(Pn) · f̃n(Pn)

)
,

with normalization matrix Cn =
∑

f̃n(Pn)∈NP
ω
(
f̃nu(P), f̃n(Pn)

)
D(Pn).

Pixel values of û obtained by patch aggregation.

3) Deconvolution stage. Solve the TV+NL regularization based energy minimization problem

min
u
λ‖∇u‖1 + µ‖∇ω̂u‖1 + 1

2‖û − Bu‖2
2.

NL gradient operator defined as (∇ω̂u)ij =
√
ω̂ij
(
uj − ui

)
with sparse bilateral weights:

ω̂ij =


1

Υi
exp
(
− 1
h2
c
‖i − j‖2

2

)
exp
(
− 1
h2
s

∑
{t:‖t‖∞≤νc} |ûi+t − ûj+t|2

)
if ‖i − j‖∞ ≤ νr ,

0 otherwise.

- Υi is the normalization factor, hc and hs are filtering parameters.

- νr and νc are the size of the research window and of the similarity patches.

Saddle-point formulation on which primal-dual algorithm [8] applies:

min
u

max
p,q
〈∇u, p〉 + 〈∇ω̂u, q〉 − δP(p)− δQ(q) + 1

2‖û − Bu‖2
2.

- δP/Q indicator function of P =
{
p | maxi

√
(p1

i )2 + (p2
i )2 ≤ λ

}
and Q =

{
q | maxi

√∑
j(qij)

2 ≤ µ
}

.

- Proximity operator of

{
δP + δQ → pointwise Euclidean projections onto L2 balls.
1
2‖û − Bu‖2

2 → computed using FFT.

4. Experimental Results
Low-resolution frames simulated by Gaussian convolution of s.d. 0.75 and 1.6 followed by subsampling of factors 2 and 4, respectively. White Gaussian noise of s.d. 2 was added.

All color images were transformed to YCbCr space. Super-resolution applied only to the luminance Y, while the chrominance channels Cb and Cr were directly upsampled by bicubic interpolation.

Seq.
Bic. [2] [1] [3] Ours Bic. [2] [1] [3] Ours

RMSE SSIM
19.69 17.13 14.55 25.07 12.99 0.9334 0.9543 0.9791 0.8759 0.9835
10.15 7.83 6.22 14.08 5.07 0.9229 0.9571 0.9811 0.8650 0.9846
12.01 9.70 8.63 21.02 8.27 0.9407 0.9694 0.9800 0.8377 0.9814
6.78 4.92 4.63 10.65 3.72 0.9860 0.9896 0.9925 0.9612 0.9948
8.27 6.30 6.89 12.90 5.42 0.9693 0.9777 0.9817 0.9228 0.9881

Avg. 11.38 9.18 8.18 16.74 7.09 0.9505 0.9696 0.9829 0.8925 0.9865

Numerical results with sampling factor 2 and 15 frames.

Seq.
Bic. [2] [1] [3] Ours Bic. [2] [1] [3] Ours

RMSE SSIM
29.79 27.18 25.50 24.14 24.41 0.7201 0.7972 0.8739 0.8787 0.8794
16.57 15.72 14.05 13.58 13.13 0.7025 0.7494 0.8453 0.8503 0.8641
20.73 18.83 16.79 16.67 16.72 0.7124 0.7836 0.8697 0.8627 0.8610
14.43 11.75 10.52 10.68 10.41 0.9038 0.9407 0.9680 0.9623 0.9685
15.97 13.35 12.85 14.10 12.34 0.8540 0.8944 0.9156 0.8804 0.9165

Avg. 19.50 17.37 15.94 15.83 15.40 0.7786 0.8331 0.8945 0.8869 0.8979

Numerical results with sampling factor 4 and 15 frames.

Seq.
Bic. [2] [1] [3] Ours Bic. [2] [1] [3] Ours

RMSE SSIM
29.45 26.82 25.00 23.47 23.62 0.7241 0.8006 0.8890 0.8866 0.8920
18.33 17.57 16.00 15.69 15.24 0.6879 0.7351 0.8393 0.8289 0.8453
20.99 19.19 18.31 17.19 17.11 0.7053 0.7776 0.8555 0.8461 0.8518
14.26 11.59 10.81 9.64 9.04 0.9052 0.9414 0.9682 0.9676 0.9755
15.78 13.11 14.50 14.56 12.20 0.8591 0.8976 0.9026 0.8626 0.9175

Avg. 19.76 17.66 16.92 16.11 15.44 0.7763 0.8305 0.8909 0.8784 0.8964

Numerical results with sampling factor 4 and 30 frames.

Original Bicubic Dong et al. [2] Unger et al. [1] Liao et al. [3] Ours

Crops of the results with sampling factor 2 and 15 frames. Only the proposed method is able to recover the correct direction of the curtains, modified by the aliasing.

Original Bicubic Dong et al. [2] Unger et al. [1] Liao et al. [3] Ours

Crops of the results with sampling factor 4 and 15 frames. All methods have problems in super-resolving the faces correctly. Ours is the only one not creating artifacts.

Original Bicubic Dong et al. [2] Unger et al. [1] Liao et al. [3] Ours

Crops of the results with sampling factor 4 and 30 frames. All video super-resolution methods except ours experience difficulties dealing with occlusions.
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