Joint Denoising and Demosaicking of RAW Video Sequences

1. Introduction

The demosaicking provokes the spatial and color correlation of noise, which is afterwards enhanced by the imaging pipeline. We present a novel joint denoising and demosaicking algorithm for videos that uses a 3D motion-compensated distance to select similar patches [1]. Although all pixels are modified, only original values are considered for averaging. This average further depends on a 2D similarity distance to avoid occlusions effects.

2. Motion-Compensated Interpolation of Grayscale Videos

Let $\{\tilde{f}_n\}_{n=1}^N$ be an initially interpolated grayscale video and D a mask keeping the trace of the original values. We describe the algorithm for the n_u -th frame, $n_u \in \{1, \ldots, N\}$. • TV-L1 optical flow [2] is used to get $\{v_n\}_{n=1}^N$, the motion fields between \tilde{f}_{n_u} and \tilde{f}_n .

• The algorithm proceeds patch per patch of $\tilde{f}_{n_{\mu}}$ by computing

$$u(P) = rac{1}{C_P} \cdot \sum_{P_n^k \in \mathcal{N}_P} \omega(\tilde{f}_{n_u}(P), \tilde{f}_n(P_n^k)) D(P_n^k) \cdot \tilde{f}_n(P_n^k),$$

where ω measures the patch similarity and C_P is a normalization factor.

• The selection of patches in \mathcal{N}_P depends on a **motion-compensated 3D distance**, which is robust to noise and aliasing artifacts. For each reference patch P in $\tilde{f}_{n_{u}}$, let $\mathcal{P} = \bigcup_{n=1}^{N} (P + v_{n}(P))$ be its extension along the frame dimension. We look for the K extended patches Q minimizing

$$d(\mathcal{P},\mathcal{Q}) = \sum_{n=1}^{N} \|\widetilde{f}_n(P+v_n(P)) - \widetilde{f}_n(Q+v_n(Q))\|^2.$$

Therefore, the selected group contains $K \cdot N$ 2D patches:

• The weights are finally defined in terms of a **2D similarity distance**:

$$\omegaig(ilde{f}_{n_u}(P), ilde{f}_n(P_n^k)ig) = \exp\left(-rac{\| ilde{f}_{n_u}(P)- ilde{f}_n(P_n^k)\|^2}{h^2}
ight),$$

which makes the algorithm robust to occlusions and flow inaccuracies. • Each pixel value is estimated by aggregation of the patches containing it.

3. Video Demosaicking Method with Noise Removal The algorithm for denoising and demosaicking of videos consists in the following steps:

- i) Apply the local directional demosaicking method in [3, Section II] to each frame to get the initial demosaicked video sequence $\{\tilde{\mathbf{f}}_n = (\tilde{f}_n^R, \tilde{f}_n^G, \tilde{f}_n^B)\}_{n=1}^N$.
- ii) Compute the motion fields $\{v_n\}_{n=1}^N$ on $\{\tilde{f}_n^G\}_{n=1}^N$.
- iii) Update the green channels by applying the strategy from Section 2 to $\{\tilde{f}_n^G\}_{n=1}^N$, with D being the Bayer CFA of the green. Let $\{u_n^G\}_{n=1}^N$ be the updated sequence.
- iv) Apply the method from Section 2 to the **channel differences** $\{\tilde{f}_n^R u_n^G\}_{n=1}^N$. The Bayer CFA of the red is used as mask D and the patch-based distances $\|\cdot\|$ are computed on $\{u_n^G\}_{n=1}^N$. Add back the green values to get the final red sequence.
- v) Repeat the process in (iv) for the blue sequence.

The interpolation method removes the noise of the green and of the channel differences. Since the updated noise-free green is finally added back, we obtain a **noise-free video**.

Antoni Buades and Joan Duran

Dept. Mathematics and Computer Science & IAC3. Universitat de les Illes Balears, E-07122, Palma, Spain toni.buades@uib.es, joan.duran@uib.es

$$N, 1 \leq k \leq K \}$$
.

3. Experimental Results

Results on simulated noisy CFA sequences

We compare with the single-image demosaicking (SID) algorithm in [3] and the method resulting from concatenating temporal demosaicking (TD) [4] with VBM3D denoising [5].

Image	SID	TD+VBM3D	(
Army	5.39	3.55	
Art	4.98	3.36	
Dog	5.14	8.08	8
Books	9.31	3.48	
Avg.	6.21	4.61	4

Image	SID	TD+VBM3D	Ours
Army	9.50	4.62	4.42
Art	9.30	5.01	4.85
Dog	9.54	8.69	8.71
Books	12.21	5.06	5.18
Avg.	10.14	5.85	5.79

RMSE for each central view and noise s.d. $\sigma = 10$.

For each pair: left picture is the original RAW frame after single-image demosaicking by [6] and the right picture is our result. In both cases, we applied the imaging pipeline from [6] after the demosaicking. Notice in the non-processed images the spatially and colored correlated noise, which is correctly removed with the proposed approach.

SID does not remove any noise, while the results by TD+VBM3D are slightly blurry and many details have been removed. The proposed algorithm correctly suppresses demosaicking artifacts and noise.

Results on real RAW sequences

4. Conclusions	
We have introduced a single alg rithm to deal with denoising a demosaicking of RAW videos. T proposed approach, based on par averaging, avoids the creation of tifacts and colored spots in the fi sequence, outperforming the co bination of more complex video	go- and The tch ar- nal om- de-
noising and demosaicking metho	ds.
5. References	
 [1] A. Buades and J. Duran, "Flow-based video super-resolution with spatio-temporal patch similarity," in <i>Proc. British Mach. Vis. Conf. (BMVC)</i>, L UK, 2017, pp. 656.1–656.12. 	ondon,
[2] C. Zach, T. Pock, and H. Bischof, "A duality based approach for realtime TV-L optical flow," in <i>Proc. DAGM Symp.</i> , Heidelberg, Germany vol. 4713 of <i>LNCS</i> , pp. 214–223.	1 , 2007,
[3] J. Duran and A. Buades, "Self-similarity and spectral correlation adapt algorithm for color demosaicking," <i>IEEE Trans. Image Process.</i> , vol. 23, no. 9, p 4031–4040, 2014.	cive op.
 [4] X. Wu and L. Zhang, "Temporal color video demosaicking via moti estimation and data fusion," <i>IEEE Trans. Circuits Syst. Video Technol.</i>, volume. 2, pp. 231–240, 2006. 	ion ol. 16,
[5] K. Dabov, A. Foi, and K. Egiazarian, "Video denoising by sparse 3D transform-don collaborative filtering," in <i>Proc. 15th European Signal Processing</i> <i>Conference</i> , Poznan, Poland, 2007, pp. 145–1	nain 149.
 [6] S. Andriani, H. Brendel, T. Seybold, and J. Goldstone, "Beyond the KODAK image set: a new referset of color image sequences," in <i>Proc. IEEE Int. Conf. Image Process. (ICIN</i> Melbourne, Australia 2013, pp. 2289–2293. 	ence P),
Acknowledgements	
The authors were supported by grants TIN2 53772-R and TIN2017-85572-P (MINECO / A FEDER, UE).	014- .EI /
GOBIERNO DE ESPAÑA MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES CIENCIA, INNOVACIÓN Y UNIVERSIDADES CIENCIA, INNOVACIÓN Y UNIVERSIDADES CIENCIA, INNOVACIÓN Y UNIVERSIDADES	iropea