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Introduction

This paper proposes a deep unfolding model-driven approach for hypersharpening, which involves merging a hyperspectral

(HS) image and a panchromatic (PAN) image. The key contributions of this work can be summarized as follows: firstly, a novel

model-based method is introduced for hypersharpening by incorporating a constraint for injecting high-frequency details from

the panchromatic image into the fused image. Secondly, the model is formulated as an energy functional optimization problem,

solved using a forward-backward splitting algorithm. The solution is further unfolded into a deep learning framework.

Mathematical Model

The observation models [5, 4] relating H and P with U are generally given by

H = DBU + ηh,

P = US + ηp,
(1)

where B ∈ RN×N is the low-pass filter modeling the point spread function of the HS sensors,D ∈ Rn×N is the l-fold downsam-
pling operator, S ∈ RC×1 is the spectral response of the PAN sensor, and ηh and ηp are assumed to be additive, white Gaussian

noise.

Then, U can be estimated by solving the following minimization problem:

min
U

1
2
‖DBU − H‖2 + γ

2
‖US − P‖2 + µR(U), (2)

On one hand, the high frequencies of the fused image can be estimated as U − H̃, where H̃ ∈ RN×C is the result of upscaling

H by bicubic interpolation. On the other hand, the high frequencies of the scene are given byP − P̃, where P̃ ∈ RN×1 contains

the low frequencies of the PAN data.

Uij − H̃ij = H̃ij

P̃i

(Pi − P̃i), (3)

We can assume that U can be linearly represented by P and an unknown matrix V ∈ RN×(r−1), where r = rank(U) > 1, i.e.,
U = PX + VY (4)

Putting it all together, the proposed fusion model is

min
V

µR(V) + F (V) = min
V

µR(V) + 1
2
‖DB (PX + VY) − H‖2

+ λ

2
‖P̃ ◦ (PX + VY) − P ◦ H̃‖2,

(5)

Minimitzation Method

To solve (5) we use the forward-backward splitting method [2, 1] to compute the solution. The basic idea is to combine an

explicit step of descent in the smooth function F with an implicit step of descent in µR:

Vk+1 = proxτµ

(
Vk − τ∇F (Vk)

)
, (6)

where
∇F (V) = B>D> (DB (PX + VY) − H) Y>

+ λ [P̃ ◦ (P̃ ◦ (PX + VY) − P ◦ H̃)]Y>.
(7)

Figure 1. Relationship between the steps of the optimization algorithm and the modules of the deep unfolded network. The operator ProxNet stands
for the proximal operator and it is replaced by a ResNet [3] as suggested in [7] and uSampnin−→nout

and dSampnin−→nout
are the learned upsampling and

downsampling operators.

Deep Learning Model

The right side of Figure 1 shows the corresponding operations in the DL framework of the hypersharpening algorithm. The four

blocs highlighted in Figure 1 are the main components of the complete network illustrated in Figure 2 where we could see three

main stages. Each stage is composed of the blocks detailed in Figure 1 and at each epoch all three stages are executed, then,

the estimated result is fed to the following loss function.

L = ‖Û(k) − U‖2 + α‖F(k)‖2 + β‖L(k)‖2, (8)

Figure 2. The unfolded network of the hypersharpening algorihtm using a high-frequency injection module. The network is composed of three stages,

each one of these stages follows the unfolding steps detailed in Figure 1.

Implementation details for PRISMA dataset

Our model is trained in a PyTorch framework, using an Nvidia A100 GPU, during 4500 epochs for the PRISMA dataset. We use

an Adam optimizer with a learning rate of 10−3 and a batch size of 8 images. The trade-off parameters α and β are fixed at 10−3.

The PAN data contains one single band at a spatial resolution of 5m. We selected and downloaded 20 large-scale scenes of

PRISMA images throughout the PRISMAmission’s portal (https://prisma.asi.it). The downloaded HS images have an original size

of 1000 × 1000 × 240, each one of the scenes was cropped into non-overlapping tiles of 128 × 128 × 240. Given that the SWIR
bands are not covered by the spectral response of the PAN sensor, only the first 66 bands were considered which resulted in

tiles of 128 × 128 × 66, from each tile a new HS and PAN images were generated following the Wald protocol [6] and using
the spectral and spatial responses provided by PRISMA mission engineers. The chosen downsampling factor for the PRISMA

dataset is 12, thus, from each tile of 128 × 128 × 66, an HS image of 11 × 11 × 66 and PAN image of the size 128 × 128 were
considered for the fusion process which is called hyper-sharpening.

Quantitative Results

ERGAS ↓ PSNR ↑ SSIM ↑ DD ↓ SAM ↓

PCA 376.06 15.70 0.3990 0.1333 35.41

Brovey 92.86 27.68 0.9180 0.0309 4.69

Bicubic 225.81 23.40 0.8303 0.0420 4.64

GS 92.14 27.75 0.9181 0.0308 4.78

GSA 186.01 23.98 0.8706 0.0399 4.67

IHS 101.00 26.78 0.8882 0.0346 7.20

SFIM 208.91 23.95 0.8801 0.0392 4.67

DiCNN 41.44 33.38 0.9520 0.0145 3.70

MSDCNN 43.10 33.07 0.9496 0.0153 4.06

GPPNN 253.18 20.99 0.8453 0.0700 7.92

MHFnet 45.29 32.69 0.9402 0.0157 4.13

Ours 15.31 42.17 0.9900 0.0078 1.59

Table 1. Average of the quality measures over all images of the PRISMA dataset. The methods are divided in classical, pure DL and unfolding methods.

The best results are in bold and the second best ones are underlined.

Qualitative Results

The visualization results of the model on the Prisma dataset are depicted in Figure 3. These visual outputs are complemented

by quantitative findings presented in Table 1. The qualitative analysis further supports the quantitative results, establishing a

comprehensive understanding of the model’s performance.

Ground truth HS GSA IHS Brovey SFIM

GS MHFnet DiCNN GPPNN MSDCNN Ours

Figure 3. Visual comparison of the fusion approaches on an image of the PRISMA dataset. We display the 35th, 45th and the 57th bands in place of the

RGB channels. The proposed deep unfolding network successfully combines the geometry of the PAN image with the spectral information of the HS

data, while all other results are affected by blur, color artifacts and spatial distortions. Our method is also able to recover both large structures, such as

the circular ground contours, and the finest ones, such as roads and small building structures.

Acknowledgements

This work is part of the MaLiSat project TED2021-132644B-I00 funded by MCIN/AEI/10.13039/501100011033 and by the

European Union “NextGenerationEU”/PRTR. The authors were also supported by the Conselleria de Fons Europeus, Universitat

i Cultura del Govern de les Illes Balears under grant AP_2021_023.

References

[1] Antonin Chambolle and Thomas Pock. “An introduction to continuous op-

timization for imaging”. In: Acta Numerica 25 (2016), pp. 161–319.

[2] Patrick L Combettes and Valérie R Wajs. “Signal recovery by proximal

forward-backward splitting”. In:Multiscalemodeling & simulation 4.4 (2005),

pp. 1168–1200.

[3] Kaiming He et al. “Deep residual learning for image recognition”. In: Pro-

ceedings of the IEEE conference on computer vision and pattern recognition.

2016, pp. 770–778.

[4] Jamila Mifdal et al. “Variational Fusion of Hyperspectral Data byNon-Local

Filtering”. In: Mathematics 9.11 (2021), p. 1265.

[5] Rafael Molina, Aggelos K Katsaggelos, and Javier Mateos. “Bayesian and

regularization methods for hyperparameter estimation in image restora-

tion”. In: IEEE Transactions on Image Processing 8.2 (1999), pp. 231–246.

[6] Lucien Wald, Thierry Ranchin, and Marc Mangolini. “Fusion of satellite

images of different spatial resolutions: Assessing the quality of resulting

images”. In: Photogrammetric engineering and remote sensing 63.6 (1997),

pp. 691–699.

[7] Qi Xie et al. “Multispectral and hyperspectral image fusion by MS/HS fu-

sion net”. In: Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition. 2019, pp. 1585–1594.

Code found in: https://github.com/jmifdal/HyPanF-net EarthVision 2023 jamila.mifdal@gmail.com

https://prisma.asi.it/authenticationendpoint/login.do?client_id=HfvpCVmAk24rSdCB4E4[\TU\textellipsis ]rfaces&isSaaSApp=false&authenticators=BasicAuthenticator:LOCAL
https://github.com/jmifdal/HyPanF-net
mailto:jamila.mifdal@gmail.com

	References

