Funded by
the European Union

NextGenerationEU

END-TO-END SHALLOW NETWORK FOR VARIATIONAL PANSHARPENING

Marc Tomas-Cruz, Jamila Mifdal, Bartomeu Coll, Joan Durant

; |IGARS S

Pasadena, California 2023

Universitat

de les Illes Balears

lUniversitat de les Illes Balears

Abstract Model Architecture Qualitative Results
Pansharpening aims to fuse the geometry of a high-resolution panchro- Algorithm Different methods
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priors. In this paper, we efficiently combine both techniques by intro- WhH = 3 (Wk + W(DBﬁk — M))
ducing a shallow residual network to learn the regularization term of -~ L - Tk b ]
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classical observation model for the multispectral data and a constraint —APoPo U)) D (1 +TA(P o P))
to preserve the geometry encoded in the panchromatic. The experi- | SRR § (0 s (Uk+1 — U"?)

ments demonstrate that our method achieves state-of-the-art results. end
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- We model the pansharpening problem as the minimization of the Conv Conv Conv
following energy function: * * * |
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- The second term is a constraint originally proposed in [2] that injects
the geometry of the PAN data in the fused product.
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Quantitative Results

- We rewrite the problem in a saddle-point formulation in order to find a
global explicit solution using the first order Chambolle-Pock algorithm

[1].

We compare our model with several state-of-the-art methods, distin-
guishing between classical and deep learning methods.
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- Based in this iterative scheme, we can obtain a generalized model
using a deep learning approach to compute the proximity of the
regularizer function.

Our model achieves both state-of-the-art results and robustness against
noise.
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