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Introduction
The variational image model

Inverse problem → recover the true image u from an observation of it, u0.
↓

Variational model:

min
u∈BV (Ω)

{∫
Ω
φ(|∇u|)dx+

λ

2
‖u− u0‖22

}
,

where

φ→ potential function.∫
Ω φ(|∇u|)dx→ smoothing term.

‖u− u0‖22 → fidelity to the data.

λ→ positive weighting constant.
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Preliminaries
The weighted total variation

Discontinuities in images should be preserved.

BV-space:∫
Ω
|∇u| dx := sup

{∫
Ω
u(x)div (ξ(x)) dx : ξ ∈ C1

c (Ω,R2), ‖ξ‖∞ ≤ 1

}

BV (Ω) :=

{
u ∈ L1(Ω) :

∫
Ω
|∇u| <∞

}

Weighted Total Variation

Let ω ∈ C1(Ω̄,R+). The weighted total variation (WTV) of u is given by∫
Ω
ω(x)|∇u| := sup

{∫
Ω
u div (ωξ) : ξ ∈ C1

c (Ω,RN ), ‖ξ‖∞ ≤ 1

}
.
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Preliminaries
The projection algorithm for WTV

Discrete linear gradient operator → (∇u)ij =
(

(∇u)1
ij , (∇u)2

ij

)
,

(∇u)1
ij =

{
ui+1,j − uij if i < N,
0 if i = N,

and (∇u)2
ij =

{
ui,j+1 − uij if j < N,
0 if j = N.

Discrete weighted Total Variation:

F (u) =
∑

1≤i,j≤N
ωij
∣∣(∇u)

ij

∣∣.
Discrete divergence → 〈−div (ωp) , u〉X = 〈ωp,∇u〉Y ∀p ∈ Y, ∀u ∈ X, then:

(div (ωp))ij =


ωijp

1
ij if i = 1,

−ωi−1,jp
1
i−1,j if i = N,

ωijp
1
ij − ωi−1,jp

1
i−1,j otherwise,

+


ωijp

2
ij if j = 1,

−ωi,j−1p
2
i,j−1 if j = N,

ωijp
2
ij − ωi,j−1p

2
i,j−1 otherwise.
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Discrete problem:

min
u∈X

F (u) +
λ

2
‖u− u0‖22. (1)

The unique solution u ∈ X of (??) is given by1

u = u0 − π 1
λ
K (u0)

where π 1
λ
K (u0) is the projection of u0 on the set

K = {div (ωp) : p ∈ Y, |pij | ≤ 1 ∀i, j} .

Constrained minimization problem:

min

{∥∥∥∥ 1

λ
div (ωp)− u0

∥∥∥∥2

2

: p ∈ Y, |pij |2 − 1 ≤ 0 ∀i, j
}
.

Semi-implicit scheme:

pk+1
i,j =

pki,j + τ
(
∇
(
div
(
ωpk

)
− λu0

))
ij

1 + τ
∣∣∣(∇ (div

(
ωpk

)
− λu0

))
ij

∣∣∣ .
1A.Chambolle. An algorithm for total variation minimization and applications. Journal of Mathematical Imaging

and Vision, 20:89-97,2004.
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Half-linear regularization
Motivations

Discrete energy:

J(u) =
∑

1≤i,j≤N
φ (|(∇u)i,j |) +

λ

2
‖u− u0‖22, (2)

where φ is a positive nonconvex potential function satisfying φ′(0+) > 0.

(??) involves numerical intrincacies:

- Various local minima.

- Nonsmooth at the minimizers.

We propose a dual formulation of the WTV norm:

- Introduce an auxiliary variable ω which determines the location of edges.

- The augmented energy J∗(u, ω) involves a WTV term respect to u.
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Half-linear regularization
Preexisting related methods

1. WTV approach2

Nonconvex but smooth potential functions.

Rewrite the regularizing term as a WTV:∑
1≤i,j≤N

ω
n+1
i,j |(∇u

n+1
)i,j |+

λ

2
‖un+1 − u0‖22,

where

ω
n+1

:=
φ (|∇un|)
|∇un|

.

Compute un+1 by Chambolle’s projection algorithm.

Numerical intricacies when |∇u| → 0 are avoided by φ(0) = φ′(0) = 0.

Half-linear approach

We rewrite the nonconvex nonsmooth regularizing term as a WTV, under assumption

φ′(0) > 0.

2A.E. Hamidi et al. Weighted and extended total variation for image restoration and decomposition. Pattern
Recognition, 43(4):960-991, 2005.
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2. Half-quadratic approach3.

Some convex and nonconvex but smooth potential functions.

Under the edge-preservation assumptions

lim
t→+∞

φ′(t)

t
= 0 and lim

t↓0+

φ′(t)

t
= M,

rewrite φ(t) = infω
{
ωt2 + ψ(ω)

}
.

Semi-implicit scheme to the E-L equation:

−div

(
φ′ (|∇un|)
|∇un|

∇un+1

)
+ λ(u

n+1 − u0) = 0.

If we set

ω
n+1

:=
φ′ (|∇un|)
|∇un|

,

then the divergence term becomes a weighted discrete laplacian operator.

Half-linear approach

Our approach consists in rewriting φ(t) = infω {ωt+ ψ(ω)}:

−div

(
φ
′ (|∇un|) ∇un+1

|∇un+1|

)
+ λ(u

n+1 − u0) = 0.

By setting ωn+1 := φ′ (|∇un|), the divergence becomes in a WTV term.

3P. Charbonnier et al. Deterministic edge-preserving regularization in computed imaging. IEEE Transactions on,
37(12):2024-2036, 1989
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Half-linear regularization
Edge-preserving properties

Hypothesis on φ:

Image analysis conditions

A1 φ is symmetric on R+ with φ(0) = 0, φ′(0+) > 0 and φ′(t) > 0 for each t ≥ 0.

A2 φ ∈ C2
(
R∗+
)

, with R∗+ = (0,+∞).

Edge-preserving conditions

A3 φ′ strictly decreases on R∗+.

A4 lim
t→∞

φ
′
(t) = 0.

A5 lim
t↓0+

φ
′
(t) = M , with 0 < M < +∞.

Technical hypothesis

A6 lim
t↓0+

φ
′′
(t) = µ, with −∞ < µ ≤ 0.
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Half-linear regularization
Approximation of the energy

Theorem

Let φ satisfy A1-A5. Then:
i) ∃ ψ : (0,M)→ (0, β) strictly convex and decreasing, with β = limt→∞ φ(t), s.t.

φ(t) = inf
ω∈(0,M)

(ωt+ ψ(ω)) .

ii) ∀ t > 0 ∃! ωt ∈ (0,M), given by ωt = φ′(t), s.t. φ(t) = ωtt+ ψ(ωt).

Augmented energy:

J∗ (u, ω) =
∑

1≤i,j≤N

(
ωi,j |(∇u)i,j |+ ψ(ωi,j)

)
+
λ

2
‖u− u0‖22. (3)

J∗ is convex in each variable when the other is fixed.

The unique ω that minimizes (??) is

ω = φ′ (|∇u|) .
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Examples of potential functions

φ(t) ω M β ψ

t

1 + t

1

(1 + t)2
1 1

(
1−
√
ω
)2

ln (1 + t)
1

1 + t
1 +∞ ω − lnω − 1

t
√

1 + t2
1

(1 + t2)
3
2

1 1
(

1− ω
2
3

) 3
2
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Half-linear regularization
Description of the algorithm

Half-linear algorithm:

u0 := u0

repeat
ωn+1 = arg minω J∗ (un, ω)
un+1 = arg minu J∗

(
u, ωn+1

)
until convergence
return (u∞, ω∞).

When u is fixed, the minimum of J∗ (un, ω) is

ωn+1 = φ′ (|∇un|) .

Once we fix ω, the problem

un+1 = arg min
u
J∗
(
u, ωn+1

)
becomes a WTV regularization → Chambolle’s projection algorithm.

Theorem

Let φ satisfy A1-A6. Then,
{
J∗
(
un, ωn+1

)}
n
converges and ‖ωn+1 − ωn‖ → 0.
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Selection of the potential function
Nonconvex nonsmooth potential functions

Nonconvexity allow us to recover neat edges.

Aim → discrete minimizers provide a reconstructed image composed of constant
regions surrounded by sharp edges.

People have used

φ1(t) :=
t

1 + t
and φ2(t) := ln(1 + t).

We propose

φ3(t) :=
t

√
1 + t2

.

B.Coll, J.Duran, C.Sbert A Projection Algorithm for a Nonconvex Restoration Image Model



Selection of the potential function
Properties of the minimizers

Nikolova et al.4 show that, if

φ′′ increases, φ′′(t) ≤ 0, lim
t↓0+

φ′′(t) < 0 and lim
t→∞

φ′′(t) = 0,

then any minizer satisfies

either | (∇û)i,j | = 0 or | (∇û)i,j | ≥ θ, ∀ 1 ≤ i, j ≤ N.

φ1 and φ2 satisfy the above requirement but φ3 does not.

Theorem

Let û be any minimizer of the discrete functional with φ3. Then,

either |(∇û)i,j | = 0 or |(∇û)i,j | ≥ θ, ∀ 1 ≤ i, j ≤ N,

where θ > 0 is the unique real value that solves

ξ (θ) = −λκ−4‖û‖22,

where ξ(t) :=
φ′′3 (t)

t2
and κ := min {|(∇û)i,j | > 0}.

4Nikolova et al. Fast nonconvex nonsmooth minimization methods for image restoration and reconstruction.
Image Processing, IEEE Transactions on, 19(12):3073-3088, 2010.
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Experimental results
Introduction of a scaling parameter

Small gradients involve extremely small weights.

Introduce a thresholding parameter α for the intensity gradient, |∇u|
α

, in order to
penalize small oscillations.

0 5 10 15 20
 Ñu¤

0.2

0.4

0.6

0.8

1.0

Ω

Figure : Graphics of the weighting function associated to φ3 without scaling and after scaling.
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Experimental results
Examples of image segmentation

Chambolle’s iterations stop when

max
i,j
|pki,j − p

k+1
i,j | < 10−2.

Half-linear algorithm proceed until

‖un+1 − un‖22
‖un‖22

< 10−20.

Parameters: ω0 = φ′(|∇u0|), α = 20 and λ = 0.1.

We plot ω in gray scale in order to show that it acts as an edge detector.

We give the topographic maps of the segmented images.
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Figure : Original brain image.
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Figure : Segmented brain image with φ1 as potential function.
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Figure : Segmented brain image with φ2 as potential function.
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Figure : Segmented brain image with φ3 as potential function.
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Figure : Zoom in on the selected detail in the brain image.
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Figure : Segmented brain image with φ1 as potential function.
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Figure : Segmented brain image with φ2 as potential function.
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Figure : Segmented brain image with φ3 as potential function.
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Figure : Original house image.
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Figure : Segmented house image with φ3 as potential function.
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Figure : Value of initial weight for house image.
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Figure : Value of weight after step 1 for house image.
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Figure : Value of weight after step 5 for house image.
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Figure : Value of the final weight after applying half-linear algorithm for house image.
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Figure : Original MRI image.
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Figure : Segmented MRI image with φ3 as potential function.
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Figure : Value of the final weight for MRI image.
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Figure : Topographic map of the segmented MRI image.
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Figure : Original house image.
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Figure : Segmented house image with φ3 as potential function.
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Figure : Value of the final weight for house image.
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Figure : Topographic map of the segmented house image.
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Figure : Original brain image.
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Figure : Segmented brain image with φ3 as potential function.
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Figure : Value of the final weight for brain image.
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Figure : Topographic map of the segmented brain image.
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Experimental results
Test of noisy images

Algorithms for TV-denoising → Chambolle’s projection algorithm.

We only based on the visual quality of the restored images to judge the
performance of the method.

We have added noise of standard deviation σ = 10 to an original image.

Parameters: α = 50 and λ = 0.1.
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Figure : Original Lena image.
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Figure : Noisy Lena image.
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Figure : Reconstructed Lena image after applying half-linear algorithm with φ3.
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Figure : Reconstructed Lena image after applying Chambolle’s algorithm for TV-denoising.
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Conclusions

Nonconvex nonsmooth image models allows one to better recover the
discontinuities.

We have proved that the discrete minimizer of nonconvex and nonsmooth
functionals provides a reconstructed image composed of constant regions
surrounded by sharp edges.

Numerically, characterizing the solution of these minimization problems is not an
easy task.

We have introduced a dual variable which determines the location of edges and it
allows to rewrite the functional as a WTV term.

We have conceived a half-linear algorithm based on alternate minimization on u
and ω. We have obtainded the following:

- This method allow us to recover the segmentation from the auxiliary variable.

- The final solution gives us a more or less piecewise constant image.

- In the case of noisy images, our results are comparable to the TV-denoising.
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