A Projection Algorithm for a Nonconvex Restoration Image Model

ALGORITMY'12

B.Coll, J.Duran and C.Sbert

Treatment and Mathematical Analysis of Digital Images Group Department of Mathematics and Computer Sciences University of Balearic Islands Palma, Balearic Islands, Spain

September 11, 2012

Govern de les Illes Balears

Conselleria d'Educació, Cultura i Universitats Direcció General d'Universitats, Recerca i Transferència del Coneixement

1 Introduction

- The variational image model.
- The road so far...

2 Preliminaries

- The weighted total variation
- The projection algorithm for WTV.

Half-linear regularization

- Motivations.
- Preexisting related methods
- Edge-preserving properties
- Approximation of the energy
- Description of the algorithm

4 Selection of the potential function

- Nonconvex nonsmooth potential functions.
- Properties of the minimizers.

Experimental results

- Introduction of a scaling parameter.
- Examples of image segmentation.
- Test of noisy images.

6 Conclusions

Inverse problem \to recover the true image u from an observation of it, u_0 .

Variational model:

$$\min_{u \in BV(\Omega)} \left\{ \int_{\Omega} \phi(|\nabla u|) dx + \frac{\lambda}{2} \|u - u_0\|_2^2 \right\},$$

where

- ullet ϕo potential function.
- $\int_{\Omega} \phi(|\nabla u|) dx \to \text{smoothing term.}$
- $||u u_0||_2^2 \rightarrow \text{fidelity to the data}$.
- $oldsymbol{\circ}$ $\lambda
 ightarrow$ positive weighting constant.

Introduction

The road so far...

1 Introduction

- The variational image model
- The road so far

2 Preliminaries

- The weighted total variation.
- The projection algorithm for WTV.

Half-linear regularization

- Motivations
- Preexisting related methods
- Edge-preserving properties
- Approximation of the energy
- Description of the algorithm

4 Selection of the potential function

- Nonconvex nonsmooth potential functions.
- Properties of the minimizers.

Experimental results

- Introduction of a scaling parameter.
- Examples of image segmentation.
- Test of noisy images.

6 Conclusions

- Discontinuities in images should be preserved.
- BV-space:

$$\begin{split} \int_{\Omega} |\nabla u| \, dx := \sup \left\{ \int_{\Omega} u(x) \mathrm{div} \left(\xi(x) \right) dx \ : \ \xi \in C^1_c(\Omega, \mathbb{R}^2), \ \|\xi\|_{\infty} \leq 1 \right\} \\ BV(\Omega) := \left\{ u \in L^1(\Omega) : \int_{\Omega} |\nabla u| < \infty \right\} \end{split}$$

Weighted Total Variation

Let $\omega \in \mathcal{C}^1(\bar{\Omega}, \mathbb{R}_+)$. The weighted total variation (WTV) of u is given by

$$\int_{\Omega} \omega(x) |\nabla u| := \sup \left\{ \int_{\Omega} u \ \operatorname{div} \left(\omega \xi \right) : \xi \in C^1_c(\Omega, \mathbb{R}^N), \|\xi\|_{\infty} \leq 1 \right\}.$$

 $\bullet \ \ \text{Discrete linear gradient operator} \to \left(\nabla u\right)_{ij} = \left(\left(\nabla u\right)_{ij}^1, \left(\nabla u\right)_{ij}^2\right)\!,$

$$(\nabla u)^1_{ij} = \left\{ \begin{array}{ll} u_{i+1,j} - u_{ij} & \text{if } i < N, \\ 0 & \text{if } i = N, \end{array} \right. \quad \text{and} \quad (\nabla u)^2_{ij} = \left\{ \begin{array}{ll} u_{i,j+1} - u_{ij} & \text{if } j < N, \\ 0 & \text{if } j = N. \end{array} \right.$$

Discrete weighted Total Variation:

$$F(u) = \sum_{1 \le i, j \le N} \omega_{ij} \left| \left(\nabla u \right)_{ij} \right|.$$

• Discrete divergence $\rightarrow \langle -\operatorname{div}\left(\omega p\right),u\rangle_X=\langle \omega p,\nabla u\rangle_Y \ \ \forall p\in Y,\ \ \forall u\in X$, then:

$$(\operatorname{div}\,(\omega p))_{ij} = \left\{ \begin{array}{ll} \omega_{ij} p_{ij}^1 & \text{if } i = 1, \\ -\omega_{i-1,j} p_{i-1,j}^1 & \text{if } i = N, \\ \omega_{ij} p_{ij}^1 - \omega_{i-1,j} p_{i-1,j}^1 & \text{otherwise,} \end{array} \right. \\ \left\{ \begin{array}{ll} \omega_{ij} p_{ij}^2 & \text{if } j = 1, \\ -\omega_{i,j-1} p_{i,j-1}^2 & \text{if } j = N, \\ \omega_{ij} p_{ij}^2 - \omega_{i,j-1} p_{i,j-1}^2 & \text{otherwise.} \end{array} \right.$$

Discrete problem:

$$\min_{u \in X} F(u) + \frac{\lambda}{2} \|u - u_0\|_2^2. \tag{1}$$

• The unique solution $u \in X$ of (??) is given by¹

$$\mathbf{u} = \mathbf{u_0} - \pi_{\frac{1}{\lambda}\mathbf{K}}(\mathbf{u_0})$$

where $\pi_{rac{1}{\lambda}K}\left(u_{0}
ight)$ is the projection of u_{0} on the set

$$K = \left\{ \operatorname{div} \left(\omega p \right) \ : \ p \in Y, \ |p_{ij}| \le 1 \ \forall i,j \right\}.$$

Constrained minimization problem:

$$\min \left\{ \left\| \frac{1}{\lambda} \mathsf{div} \left(\omega p \right) - u_0 \right\|_2^2 \ : \ p \in Y, \ |p_{ij}|^2 - 1 \le 0 \ \forall i, j \right\}.$$

Semi-implicit scheme:

$$p_{i,j}^{k+1} = \frac{p_{i,j}^k + \tau \left(\nabla \left(\operatorname{div}\left(\omega p^k\right) - \lambda u_0\right)\right)_{ij}}{1 + \tau \left|\left(\nabla \left(\operatorname{div}\left(\omega p^k\right) - \lambda u_0\right)\right)_{ij}\right|}.$$

¹A.Chambolle. An algorithm for total variation minimization and applications. *Journal of Mathematical Imaging and Vision*, 20:89-97.2004.

1 Introduction

- The variational image model
- The road so far...

2 Preliminaries

- The weighted total variation
- The projection algorithm for WTV.

3 Half-linear regularization

- Motivations.
- · Preexisting related methods.
- Edge-preserving properties.
- Approximation of the energy.
- Description of the algorithm.

4 Selection of the potential function

- Nonconvex nonsmooth potential functions.
- Properties of the minimizers.

5 Experimental results

- Introduction of a scaling parameter.
- Examples of image segmentation.
- Test of noisy images.

6 Conclusions

Discrete energy:

$$J(u) = \sum_{1 \le i, j \le N} \phi(|(\nabla u)_{i,j}|) + \frac{\lambda}{2} ||u - u_0||_2^2, \tag{2}$$

where ϕ is a positive nonconvex potential function satisfying $\phi'(\mathbf{0}^+) > \mathbf{0}$.

- (??) involves numerical intrincacies:
 - Various local minima
 - Nonsmooth at the minimizers.
- We propose a dual formulation of the WTV norm:
 - Introduce an auxiliary variable ω which determines the location of edges.
 - The augmented energy $J^*(u,\omega)$ involves a WTV term respect to u.

1. WTV approach²

- Nonconvex but smooth potential functions.
- Rewrite the regularizing term as a WTV:

$$\sum_{1 \le i,j \le N} \omega_{i,j}^{n+1} |(\nabla u^{n+1})_{i,j}| + \frac{\lambda}{2} ||u^{n+1} - u_0||_2^2,$$

where

$$\omega^{n+1} := \frac{\phi(|\nabla u^n|)}{|\nabla u^n|}.$$

- \bullet Compute u^{n+1} by Chambolle's projection algorithm.
- Numerical intricacies when $|\nabla u| \to 0$ are avoided by $\phi(0) = \phi'(0) = 0$.

Half-linear approach

We rewrite the **nonconvex nonsmooth** regularizing term as a WTV, under assumption $\phi'(0) > 0$.

²A.E. Hamidi et al. Weighted and extended total variation for image restoration and decomposition. *Pattern Recognition*, 43(4):960-991, 2005.

2. Half-quadratic approach³.

- Some convex and nonconvex but smooth potential functions.
- Under the edge-preservation assumptions

$$\lim_{t\to +\infty} \frac{\phi'(t)}{t} = 0 \quad \text{and} \quad \lim_{t\downarrow 0^+} \frac{\phi'(t)}{t} = M,$$

rewrite $\phi(t) = \inf_{\omega} \{ \omega t^2 + \psi(\omega) \}$.

• Semi-implicit scheme to the E-L equation:

$$-{\rm div}\left(\frac{\phi'\left(|\nabla u^n|\right)}{|\nabla u^n|}\nabla u^{n+1}\right)+\lambda(u^{n+1}-u_0)=0.$$

If we set

$$\omega^{n+1}:=\frac{\phi'\left(|\nabla u^n|\right)}{|\nabla u^n|},$$

then the divergence term becomes a weighted discrete laplacian operator.

Half-linear approach

Our approach consists in rewriting $\phi(t) = \inf_{\omega} \{ \omega t + \psi(\omega) \}$:

$$-\mathrm{div}\left(\phi'\left(|\nabla u^n|\right)\frac{\nabla u^{n+1}}{|\nabla u^{n+1}|}\right)+\lambda(u^{n+1}-u_0)=0.$$

By setting $\omega^{n+1} := \phi'(|\nabla u^n|)$, the divergence becomes in a **WTV** term.

³P. Charbonnier et al. Deterministic edge-preserving regularization in computed imaging. *IEEE Transactions on*, 37(12):2024-2036, 1989

Hypothesis on ϕ :

Image analysis conditions

A1 ϕ is symmetric on \mathbb{R}_+ with $\phi(0) = 0$, $\phi'(0^+) > 0$ and $\phi'(t) > 0$ for each $t \geq 0$.

A2
$$\phi \in \mathcal{C}^2\left(\mathbb{R}_+^*\right)$$
, with $\mathbb{R}_+^* = (0, +\infty)$.

Edge-preserving conditions

A3 ϕ' strictly decreases on \mathbb{R}_+^* .

A4
$$\lim_{t\to\infty} \phi'(t) = 0.$$

A5
$$\lim_{t\downarrow 0^+} \phi'(t) = M$$
, with $0 < M < +\infty$.

Technical hypothesis

A6
$$\lim_{t\downarrow 0^+} \phi''(t) = \mu$$
, with $-\infty < \mu \le 0$.

Theorem

Let ϕ satisfy A1-A5. Then:

i) $\exists \psi : (0, M) \to (0, \beta)$ strictly convex and decreasing, with $\beta = \lim_{t \to \infty} \phi(t)$, s.t.

$$\phi(t) = \inf_{\omega \in (0, M)} (\omega t + \psi(\omega)).$$

- ii) $\forall t > 0 \exists ! \omega_t \in (0, M)$, given by $\omega_t = \phi'(t)$, s.t. $\phi(t) = \omega_t t + \psi(\omega_t)$.
 - Augmented energy:

$$J^*(u,\omega) = \sum_{1 \le i,j \le N} \left(\omega_{i,j} | (\nabla u)_{i,j} | + \psi(\omega_{i,j}) \right) + \frac{\lambda}{2} \|u - u_0\|_2^2.$$
 (3)

- \bullet J^* is **convex** in each variable when the other is fixed.
- The unique ω that minimizes (??) is

$$\omega = \phi'(|\nabla u|).$$

Examples of potential functions

$\phi(t)$	ω	M	β	ψ
$\frac{t}{1+t}$	$\frac{1}{(1+t)^2}$	1	1	$(1-\sqrt{\omega})^2$
$\ln\left(1+t\right)$	$\frac{1}{1+t}$	1	$+\infty$	$\omega - \ln \omega - 1$
$\frac{t}{\sqrt{1+t^2}}$	$\frac{1}{(1+t^2)^{\frac{3}{2}}}$	1	1	$\left(1-\omega^{\frac{2}{3}}\right)^{\frac{3}{2}}$

Half-linear algorithm:

```
\begin{array}{l} u^0 := u_0 \\ \textbf{repeat} \\ \omega^{n+1} = \arg\min_{\omega} J^* \left(u^n, \omega\right) \\ u^{n+1} = \arg\min_{u} J^* \left(u, \omega^{n+1}\right) \\ \textbf{until convergence} \\ \textbf{return } (u^\infty, \omega^\infty). \end{array}
```

 \bullet When u is fixed, the minimum of $J^{*}\left(u^{n},\omega\right)$ is

$$\omega^{n+1} = \phi'(|\nabla u^n|).$$

• Once we fix ω , the problem

$$u^{n+1} = \arg\min J^* \left(u, \omega^{n+1} \right)$$

becomes a WTV regularization → Chambolle's projection algorithm.

Theorem

Let ϕ satisfy A1-A6. Then, $\{J^*(u^n,\omega^{n+1})\}_n$ converges and $\|\omega^{n+1}-\omega^n\|\to 0$.

1 Introduction

- The variational image model
- The road so far...

2 Preliminaries

- The weighted total variation
- The projection algorithm for WTV.

Half-linear regularization

- Motivations
- Preexisting related methods
- Edge-preserving properties
- Approximation of the energy
- Description of the algorithm

4 Selection of the potential function

- Nonconvex nonsmooth potential functions.
- Properties of the minimizers.

5 Experimental results

- Introduction of a scaling parameter.
- Examples of image segmentation.
- Test of noisy images.
- 6 Conclusions

- Nonconvexity allow us to recover neat edges.
- People have used

$$\phi_1(t):=rac{t}{1+t} \quad ext{and} \quad \phi_2(t):=\ln(1+t).$$

• We propose

$$\phi_3(t) := \frac{t}{\sqrt{1+t^2}}.$$

Nikolova et al.⁴ show that, if

$$\phi'' \text{ increases}, \phi''(t) \leq 0, \lim_{t \downarrow 0^+} \phi''(t) < 0 \text{ and } \lim_{t \to \infty} \phi''(t) = 0,$$

then any minizer satisfies

$$\text{either} \quad | \ (\nabla \hat{u})_{i,j} \ | = 0 \quad \text{or} \quad | \ (\nabla \hat{u})_{i,j} \ | \geq \theta, \quad \forall \ 1 \leq i,j \leq N.$$

ullet ϕ_1 and ϕ_2 satisfy the above requirement but ϕ_3 does not.

Theorem

Let \hat{u} be any minimizer of the discrete functional with ϕ_3 . Then,

$$\mbox{either} \quad |(\nabla \hat{u})_{i,j}| = 0 \quad \mbox{ or } \quad |(\nabla \hat{u})_{i,j}| \geq \theta, \quad \forall \ 1 \leq i,j \leq N,$$

where $\theta > 0$ is the unique real value that solves

$$\xi(\theta) = -\lambda \kappa^{-4} \|\hat{u}\|_2^2,$$

where $\xi(t):=rac{\phi_3''(t)}{t^2}$ and $\kappa:=\min\{|(\nabla \hat{u})_{i,j}|>0\}.$

⁴Nikolova et al. Fast nonconvex nonsmooth minimization methods for image restoration and reconstruction. Image Processing, IEEE Transactions on, 19(12):3073-3088, 2010.

1 Introduction

- The variational image model
- The road so far...

2 Preliminaries

- The weighted total variation
- The projection algorithm for WTV.

B Half-linear regularization

- Motivations
- Preexisting related methods
- Edge-preserving properties
- Approximation of the energy
- Description of the algorithm

4 Selection of the potential function

- Nonconvex nonsmooth potentia functions
- Properties of the minimizers.

5 Experimental results

- Introduction of a scaling parameter.
- Examples of image segmentation.
- Test of noisy images.

6 Conclusions

- Small gradients involve extremely small weights.
- Introduce a thresholding parameter α for the intensity gradient, $\frac{|\nabla u|}{\alpha}$, in order to penalize small oscillations.

Figure : Graphics of the weighting function associated to ϕ_3 without scaling and after scaling.

• Chambolle's iterations stop when

$$\max_{i,j}|p_{i,j}^k-p_{i,j}^{k+1}|<10^{-2}.$$

• Half-linear algorithm proceed until

$$\frac{\|u^{n+1} - u^n\|_2^2}{\|u^n\|_2^2} < 10^{-20}.$$

- Parameters: $\omega^0 = \phi'(|\nabla u_0|)$, $\alpha = 20$ and $\lambda = 0.1$.
- We plot ω in gray scale in order to show that it acts as an edge detector.
- We give the topographic maps of the segmented images.

Figure: Original brain image.

Figure : Segmented brain image with ϕ_1 as potential function.

Figure : Segmented brain image with ϕ_2 as potential function.

Figure : Segmented brain image with ϕ_3 as potential function.

Figure: Zoom in on the selected detail in the brain image.

Figure : Segmented brain image with ϕ_1 as potential function.

Figure : Segmented brain image with ϕ_2 as potential function.

Figure : Segmented brain image with ϕ_3 as potential function.

Figure: Original house image.

Figure : Segmented house image with ϕ_3 as potential function.

Figure: Value of initial weight for house image.

Figure: Value of weight after step 1 for house image.

Figure: Value of weight after step 5 for house image.

Figure: Value of the final weight after applying half-linear algorithm for house image.

Figure: Original MRI image.

Figure : Segmented MRI image with ϕ_3 as potential function.

Figure: Value of the final weight for MRI image.

Figure: Topographic map of the segmented MRI image.

Figure: Original house image.

Figure : Segmented house image with ϕ_3 as potential function.

Figure: Value of the final weight for house image.

Figure: Topographic map of the segmented house image.

Figure: Original brain image.

Figure : Segmented brain image with ϕ_3 as potential function.

Figure: Value of the final weight for brain image.

Figure: Topographic map of the segmented brain image.

Experimental results

Test of noisy images

- ullet Algorithms for TV-denoising o Chambolle's projection algorithm.
- We only based on the visual quality of the restored images to judge the performance of the method.
- ullet We have added noise of standard deviation $\sigma=10$ to an original image.
- Parameters: $\alpha = 50$ and $\lambda = 0.1$.

Figure: Original Lena image.

Figure : Noisy Lena image.

Figure : Reconstructed Lena image after applying half-linear algorithm with ϕ_3 .

Figure: Reconstructed Lena image after applying Chambolle's algorithm for TV-denoising.

Contents

1 Introduction

- The variational image model
- The road so far...

2 Preliminaries

- The weighted total variation
- The projection algorithm for WTV.

Half-linear regularization

- Motivations
- Preexisting related methods
- Edge-preserving properties
- Approximation of the energy
- Description of the algorithm

4 Selection of the potential function

- Nonconvex nonsmooth potential functions.
- Properties of the minimizers.

Experimental results

- Introduction of a scaling parameter.
- Examples of image segmentation.
- Test of noisy images.

6 Conclusions

Conclusions

- Nonconvex nonsmooth image models allows one to better recover the discontinuities.
- We have proved that the discrete minimizer of nonconvex and nonsmooth functionals provides a reconstructed image composed of constant regions surrounded by sharp edges.
- Numerically, characterizing the solution of these minimization problems is not an easy task.
- We have introduced a dual variable which determines the location of edges and it allows to rewrite the functional as a WTV term.
- \bullet We have conceived a half-linear algorithm based on alternate minimization on u and $\omega.$ We have obtained the following:
 - This method allow us to recover the segmentation from the auxiliary variable.
 - The final solution gives us a more or less piecewise constant image.
 - In the case of noisy images, our results are comparable to the TV-denoising.

Acknowledgements

These authors were supported by the Ministerio de Ciencia e Innovación under grant TIN2011-27539. During this work, the second author had a fellowship of the Conselleria d'Educació, Cultura i Universitats of the Govern de les Illes Balears for the realization of his Ph.D. thesis, which has been selected under an operational program co-financed by the European Social Fund.

Thank you for your attention