A New Mathematical Model for Pansharpening Satellite Images Success Stories of Spanish Industrial Mathematics with Industry ICIAM 2015

J. Duran Joint work with A.Buades, B.Coll, and C.Sbert

> August 14th, 2015 Beijing, China

Introduction

 $\begin{tabular}{ll} \hline \bullet Satellite data $\left\{ \begin{array}{l} high-resolution & \textbf{panchromatic image} \ (PAN), \\ low-resolution & \textbf{multispectral image} \ (MS). \\ \end{array} \right. $$

Introduction

Satellite data { high-resolution panchromatic image (PAN), low-resolution multispectral image (MS).

Panchromatic image

Pansharpened image

Introduction

 $\begin{tabular}{ll} \hline \bullet Satellite data $\left\{ \begin{array}{ll} high-resolution & \textbf{panchromatic image} \ (PAN), \\ low-resolution & \textbf{multispectral image} \ (MS). \\ \hline \end{tabular} \right.$

Spectral response of each sensor to wavelengths of light

- Academical framework:
 - Work with three channels (R, G, B).
 - ► PAN and MS spatially registered.
 - ▶ PAN obtained by linear combination of MS components.
- Far from real case but:
 - Good starting point.
 - lt permits to simulate and compare with a ground truth.
- ► Real satellite data:
 - PAN sensor does not cover all MS wavelength ranges.
 - PAN and MS are misregistered.
 - MS suffers from aliasing and cannot be interpolated.

- ▶ IHS transform: convert RGB to IHS, replace I by PAN and get back to RGB.
- ▶ PCA transform: compute PC's, replace PC1 by PAN and reverse transform.
- ▶ Brovey transform: normalize MS image and multiply it by PAN.
- ▶ Wavelet-based methods: replace high-frequency coefficients by those of PAN.

- Convert RGB-image to IHS-image.

$$\begin{pmatrix} I \\ v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ -\frac{\sqrt{2}}{6} & -\frac{\sqrt{2}}{6} & \frac{\sqrt{2}}{3} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 \end{pmatrix} \begin{pmatrix} R \\ G \\ B \end{pmatrix}$$

- Replace I by PAN.

- Transformed back to RGB-space.
$$C = C_0 + (PAN - I), \quad C \in \{R, G, B\}$$

- ▶ IHS transform: convert RGB to IHS, replace I by PAN and get back to RGB.
- ▶ PCA transform: compute PC's, replace PC1 by PAN and reverse transform.
- ▶ **Brovey transform:** normalize MS image and multiply it by PAN.
- ▶ Wavelet-based methods: replace high-frequency coefficients by those of PAN.

- ▶ IHS transform: convert RGB to IHS, replace I by PAN and get back to RGB.
- ▶ PCA transform: compute PC's, replace PC1 by PAN and reverse transform.
- **Brovey transform:** normalize MS image and multiply it by PAN.
- ▶ Wavelet-based methods: replace high-frequency coefficients by those of PAN.

$$C = \frac{C_0}{\frac{1}{3}(R_0 + G_0 + B_0)} PAN, \quad C \in \{R, G, B\}$$

- ▶ IHS transform: convert RGB to IHS, replace I by PAN and get back to RGB.
- ▶ PCA transform: compute PC's, replace PC1 by PAN and reverse transform.
- ▶ **Brovey transform:** normalize MS image and multiply it by PAN.
- ▶ Wavelet-based methods: replace high-frequency coefficients by those of PAN.

Variational framework

▶ Variational methods: Solve $\min_{u \in \mathcal{A}} J(u)$ s.t.

u with low energy $J \Leftrightarrow u$ satisfying desired properties

► Notations:

- $\Omega \subset \mathbb{R}^N$ open and bounded domain.
- ▶ $S \subseteq \Omega$ sampling grid (low-resolution pixels).
- ▶ PAN image: $P: \Omega \to \mathbb{R}$.
- ▶ MS image: $\vec{u}^S = (u_1^S, \dots, u_M^S), u_m^S : S \to \mathbb{R}, M$ spectral bands.
- ▶ Pansharpened image: $\vec{u} = (u_1, ..., u_M), u_m : \Omega \to \mathbb{R}$.
- ▶ Ballester et al.¹ proposed to minimize a functional with
 - a local regularization term transferring the geometry of panchromatic,
 - two fidelity terms with panchromatic and multispectral data.

¹C. Ballester, V. Caselles, L. Igual, J. Verdera. *A variational model for P+XS image fusion*. Int. J. Comput. Vis., 69(1):43-58, 2006.

Variational framework

Assumptions

▶ PAN is a linear combination of multispectral channels.

$$P(x) \equiv \sum_{m=1}^{M} \alpha_m u_m(x), \quad \forall x \in \Omega,$$

where $\alpha_m \geq 0$ and $\sum_m \alpha_m = 1$.

 Low-resolution pixels formed from high-resolution ones by low-pass filtering followed by subsampling.

$$u_m^{S}(x) = k_m * u_m(x), \quad \forall x \in S, \quad \forall 1 \leq m \leq M.$$

Variational framework

Ballester et al. proposed to minimize the energy functional

$$J(\vec{u}) = \frac{1}{2} \sum_{m=1}^{M} \int_{\Omega} \left| \frac{\nabla P(x)^{\perp}}{\|\nabla P(x)\|} \cdot \nabla u_{m}(x) \right|^{2} dx$$

$$+ \frac{\lambda}{2} \int_{\Omega} \left(\sum_{m=1}^{M} \alpha_{m} u_{m}(x) - P(x) \right)^{2} dx$$

$$+ \frac{\mu}{2} \sum_{m=1}^{M} \int_{\Omega} \Pi_{S} \cdot \left(k_{m} * u_{m}(x) - u_{m}^{\Omega}(x) \right)^{2} dx,$$

where $\lambda, \mu > 0$ are trade-off parameters, and $\vec{u}^{\Omega} = (u_1^{\Omega}, \dots, u_M^{\Omega})$ is an arbitrary continuous extension of \vec{u}^{S} to the whole domain Ω .

 $\Pi_S = \sum_{x \in S} \delta_x$ is a **Dirac's comb** defined by sampling grid S.

We proposed to replace the local by a non-local regularization term

$$J(\vec{u}) = \frac{1}{2} \sum_{m=1}^{M} \int_{\Omega} \int_{\Omega} (u_m(x) - u_m(y))^2 \omega(x, y) dx dy$$

$$+ \frac{\lambda}{2} \int_{\Omega} \left(\sum_{m=1}^{M} \alpha_m u_m(x) - P(x) \right)^2 dx$$

$$+ \frac{\mu}{2} \sum_{m=1}^{M} \int_{\Omega} \Pi_S \cdot (k_m * u_m(x) - u_m^{\Omega}(x))^2 dx,$$

where the weights are computed on PAN:

$$\omega(x,y)=\frac{1}{C(x)}e^{-\frac{d_{\rho}(P(x),P(y))}{h^2}},\quad C(x)=\int_{\Omega}e^{-\frac{d(P(x),P(y))}{h^2}}dy,$$

s.t.
$$0 \le \omega(x, y) \le 1$$
 and $\int_{\Omega} \omega(x, y) dy = 1 \ \forall x \in \Omega$.

Weights are non symmetric

Mathematical Analysis

Lemma

 $J(\vec{u})$ is strictly convex for any $\vec{u} \in A$.

Theorem

If
$$\vec{g} = (g_1, \dots, g_M)$$
, with $g_m \in L^2(\Gamma)$, then $\exists ! \ \vec{u}^* \in A \ s.t.$

$$J(\vec{u}^*) = \inf_{\vec{u} \in \mathcal{A}} J(\vec{u}).$$

For definitions of spaces $\mathcal{A}, \Gamma, \mathcal{Z}$ and respective norms see

A. Buades, B. Coll, J. Duran, C. Sbert, "A Nonlocal Variational Model for Pansharpening Image Fusion". SIAM J. Imaging Sci., vol. 7(2), pp:761-796, 2014.

Discrete Formulation

- ▶ PAN given on $I = \{0, 1, ..., N-1\} \times \{0, 1, ..., N-1\}.$
- ▶ MS given on sampling grid $S \subseteq I$ of size $\frac{N}{s} \times \frac{N}{s}$, s sampling factor.
- Discrete functional:

$$J(\vec{u}) = \frac{1}{2} \sum_{m=1}^{M} \sum_{p,q \in I} (u_m(p) - u_m(q))^2 \omega(p,q)$$

$$+ \frac{\lambda}{2} \sum_{p \in I} \left(\sum_{m=1}^{M} \alpha_m u_m(p) - P(p) \right)^2$$

$$+ \frac{\mu}{2} \sum_{m=1}^{M} \sum_{p \in S} (k_m * u_m(p) - u_m^{\Omega}(p))^2.$$

Discrete Formulation

Explicit scheme for gradient descent method

$$\begin{array}{lcl} u_{m}^{(n+1)}(p) & = & u_{m}^{(n)}(p) - \Delta t \sum_{p,q \in I} \left(u_{m}^{(n)}(p) - u_{m}^{(n)}(q) \right) \left(\omega(p,q) + \omega(q,p) \right) \\ \\ & - & \Delta t \lambda \alpha_{m} \left(\sum_{k=1}^{M} \alpha_{k} u_{m}^{(n)}(p) - P(p) \right) \\ \\ & - & \Delta t \mu k_{m}^{t} * \left[\Pi_{S} \cdot \left(k_{m} * u_{m}^{(n)}(p) - u_{m}^{\Omega}(p) \right) \right], \quad \forall p \in I, \ \forall 1 \leq m \leq M. \end{array}$$

- ▶ n > 0 → iteration number.
- $ightharpoonup \Delta t > 0
 ightharpoonup ext{time step in the descent direction}.$
- ▶ $k_m \rightarrow$ Gaussian kernels of s.d. $\sigma = 1.2$ if s = 2 and $\sigma = 2.2$ if s = 4.
- $ightharpoonup \Pi_S$ is a $N \times N$ matrix s.t.

$$\Pi_{\mathcal{S}}(p) = \left\{ \begin{array}{ll} 1 & \text{if } p \in \mathcal{S}, \\ 0 & \text{if } p \notin \mathcal{S}, \end{array} \right. \quad \forall p \in I.$$

Discrete weights:

$$\omega(p,q) = \begin{cases} & \frac{1}{C(p)} \mathrm{e}^{-\frac{1}{h^2} \sum_{t \in \mathcal{N}_{\mathbf{0}}} \|P(p+t) - P(q+t)\|^2} & \text{if } \|p - q\| \le L, \\ & 0 & \text{otherwise}. \end{cases}$$

- ▶ Regularity term restricted to pixels at a certain distance (7 × 7 pixels).
- $ightharpoonup \mathcal{N}_0 \rightarrow I \times I$ window centered at (0,0) $(3 \times 3 \text{ pixels})$.
- ▶ Weights-filtering parameter $\rightarrow h = 1.25$.
- ▶ Trade-off parameters $\rightarrow \lambda = 17.5$ and $\mu = 17.5 \cdot s^2$.
- ▶ Number of iterations $\rightarrow N_{iter} = 50$.

s=2					s = 4				
IHS	BRV	WVL	PXS	NLV I	IHS	BRV	WVL	PXS	NLV I
1.16	1.14	1.80	1.54	1.05	1.93	1.91	2.26	2.15	1.60
1.42	1.40	2.58	1.97	1.37	2.23	2.21	2.96	2.64	1.83
1.03	0.99	1.90	1.43	0.87	1.72	1.68	2.17	1.94	1.34
2.08	2.07	2.71	1.92	1.68	2.62	2.62	2.89	2.54	2.26
2.43	2.43	3.21	2.24	2.10	3.02	3.02	3.44	2.86	2.52
1.42	1.41	1.96	1.26	1.18	1.83	1.82	2.11	1.70	1.49
1.75	1.74	2.92	2.46	1.45	3.04	3.03	3.68	3.47	2.29
0.99	0.98	1.46	0.88	0.82	1.33	1.32	1.59	1.22	1.04
1.27	1.25	2.36	1.95	1.14	2.21	2.20	2.86	2.60	1.63
1.51	1.49	2.32	1.74	1.30	2.21	2.20	2.66	2.35	1.78

Truth image

 $IHS\ pansharpened\ image$

Brovey pansharpened image

Wavelets-based pansharpened image

P+XS pansharpened image

Proposed pansharpened image

Real Satellite Data

- ▶ P and XS components not co-registered.
- ► Forbidden to register/resample XS because of aliasing.
- ▶ Panchromatic not a linear combination of MS components.

 $\downarrow \downarrow$

Modify proposed functional by decoupling the XS components and avoiding the linearity constraint on the PAN w.r.t. XS components

Dropping Linearity Constraint

Drop the linearity constraint on PAN w.r.t. XS components:

$$P(x) \equiv \sum_{m=1}^{M} \alpha_m u_m(x), \quad \forall x \in \Omega.$$

Truth image

Result without constraint

New Constraint

Introduce the new constraint

$$\frac{u_m(x)}{P(x)} = \frac{\widetilde{u}_m(x)}{\widetilde{P}(x)}, \ \forall x \in \Omega,$$

where

- $ightharpoonup P^S
 ightarrow {\sf PAN}$ at the resolution of S by appropriate downsampling process,
- $ightharpoonup \widetilde{P}
 ightarrow$ extension of $P^{\mathcal{S}}$ to the whole domain by bicubic interpolation,
- $\widetilde{u} \rightarrow \text{ extension of } \overrightarrow{u}^S \text{ to the whole domain by bicubic interpolation.}$

We can rewite the constraint as

$$\underbrace{u_m(x) - \widetilde{u}_m(x)}_{\text{high-frequencies of min}} = \underbrace{\frac{\widetilde{u}_m(x)}{\widetilde{P}(x)}}_{\text{high-frequencies of PAN}} \cdot \underbrace{\left(P(x) - \widetilde{P}(x)\right)}_{\text{high-frequencies of PAN}}, \quad \forall x \in \Omega.$$

In a variational formulation:

$$\sum_{m=1}^{M} \int_{\Omega} \left(u_m(x) \widetilde{P}(x) - \widetilde{u}_m(x) P(x) \right)^2 dx.$$

We propose to minimize the energy

$$J(\vec{u}) = \frac{1}{2} \sum_{m=1}^{M} \iint_{\Omega \times \Omega} (u_m(y) - u_m(x))^2 \omega_P(x, y) \, dy \, dx$$

$$+ \frac{\mu s^2}{2} \sum_{m=1}^{M} \int_{\Omega} \Pi_S(x) \left(k_m * u_m(x) - u_m^{\Omega}(x) \right)^2 dx$$

$$+ \frac{\delta}{2 \|P\|} \sum_{m=1}^{M} \int_{\Omega} \left(u_m(x) \widetilde{P}(x) - \widetilde{u}_m(x) P(x) \right)^2 dx,$$

where $\mu, \delta >$ 0 are trade-off parameters.

Reformulation of the Energy

Which can be minimized separately for each channel u_m

$$J(u_m) = \frac{1}{2} \iint_{\Omega \times \Omega} (u_m(y) - u_m(x))^2 \omega_P(x, y) \, dy \, dx$$

$$+ \frac{\mu s^2}{2} \int_{\Omega} \Pi_S(x) \left(k_m * u_m(x) - u_m^{\Omega}(x) \right)^2 dx$$

$$+ \frac{\delta}{2 ||P||} \int_{\Omega} \left(u_m(x) \widetilde{P}(x) - \widetilde{u}_m(x) P(x) \right)^2 dx,$$

for each $m \in \{1, \ldots, M\}$.

We can now proceed as follows:

- i) Superimpose PAN on each XS component.
- ii) Solve the minimization problem for each u_m component independently.
- iii) Superimpose all results (free from aliasing) in a common geometry.

Experimental Results on Simulated Data

- ► Simulate data at 30 cm from full color aerial images:
 - ► PAN obtained as average of full color components,
 - XS obtained as convolution plus subsampling from full color components.
- Literature model fully satisfied.

Experimental Results on Simulated Data

σ	Image	Bicubic	IHS	Brovey	P+XS	NLV I	NLV II
1.7	Houses	8.75	1.98	1.65	1.61	1.34	1.48
	Parking	9.88	1.91	1.58	1.53	1.29	1.41
	Prison	6.56	2.21	1.69	1.62	1.20	1.38
	Avg.	8.40	2.03	1.64	1.59	1.28	1.42
1.5	Houses	8.53	1.92	1.61	1.64	1.36	1.49
	Parking	9.62	1.85	1.54	1.55	1.30	1.41
	Prison	6.36	2.12	1.62	1.66	1.22	1.39
	Avg.	8.17	1.96	1.59	1.62	1.29	1.43
1.3	Houses	8.35	1.88	1.57	1.65	1.40	1.50
	Parking	9.40	1.81	1.50	1.57	1.32	1.42
	Prison	6.18	2.05	1.57	1.67	1.26	1.41
	Avg.	7.98	1.91	1.55	1.63	1.33	1.44
Global Avg.		8.18	1.97	1.59	1.61	1.30	1.43

Experimental Results on Simulated Data

25 / 29

Experimental Results on Real Satellite Data

- Pléiades produces
 - PAN image at 70 cm per pixel,
 - ▶ 4 XS bands (blue, green, red and near-infrared) at 2.8 m per pixel.
- PAN is resampled into the reference of each XS component, thus permitting the pansharpenning of each band separately as proposed for Pléiades images².
- Each high-resolution spectral component is obtained from the minimization and then transformed into a common reference for visualization purposes.

²Latry, C. and Blanchet, G. and Fourest, S., *Chaine de fusion P+XS Pléiades-HR*, Proc. GRETSI, 2013

Proposed Variational Model II Experimental Results on Real Satellite Data

Bicubic interpolation on a Toulouse scene captured by Pléiades.

Proposed Variational Model II Experimental Results on Real Satellite Data

Modified Brovey method on a Toulouse scene captured by Pléiades.

Proposed Variational Model II Experimental Results on Real Satellite Data

Proposed model on a Toulouse scene captured by Pléiades.