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Introduction

I Satellite data
{

high-resolution panchromatic image (PAN),
low-resolution multispectral image (MS).

Spectral response of each sensor to wavelengths of light

4 / 29



Literature

I Academical framework:

I Work with three channels (R, G, B).
I PAN and MS spatially registered.
I PAN obtained by linear combination of MS components.

I Far from real case but:

I Good starting point.
I It permits to simulate and compare with a ground truth.

I Real satellite data:

I PAN sensor does not cover all MS wavelength ranges.
I PAN and MS are misregistered.
I MS suffers from aliasing and cannot be interpolated.
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Literature

I IHS transform: convert RGB to IHS, replace I by PAN and get back to RGB.
I PCA transform: compute PC’s, replace PC1 by PAN and reverse transform.
I Brovey transform: normalize MS image and multiply it by PAN.
I Wavelet-based methods: replace high-frequency coefficients by those of PAN.

- Convert RGB-image to IHS-image. I
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- Replace I by PAN.

- Transformed back to RGB-space.
C = C0 + (PAN − I ), C ∈ {R,G ,B}
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Variational framework

I Variational methods: Solve min
u∈A

J(u) s.t.

u with low energy J ⇔ u satisfying desired properties

I Notations:

I Ω ⊂ RN open and bounded domain.

I S ⊆ Ω sampling grid (low-resolution pixels).

I PAN image: P : Ω→ R.

I MS image: ~uS = (uS1 , . . . , u
S
M), uSm : S → R, M spectral bands.

I Pansharpened image: ~u = (u1, . . . , uM), um : Ω→ R.

I Ballester et al.1 proposed to minimize a functional with

I a local regularization term transferring the geometry of panchromatic,

I two fidelity terms with panchromatic and multispectral data.

1C. Ballester, V. Caselles, L. Igual, J. Verdera. A variational model for P+XS image fusion.
Int. J. Comput. Vis., 69(1):43-58, 2006.
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Variational framework

Assumptions

I PAN is a linear combination of multispectral channels.

P(x) ≡
M∑

m=1

αmum(x), ∀x ∈ Ω,

where αm ≥ 0 and
∑

m αm = 1.

I Low-resolution pixels formed from high-resolution ones by low-pass
filtering followed by subsampling.

uS
m(x) = km ∗ um(x), ∀x ∈ S , ∀1 ≤ m ≤ M.
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Variational framework
Ballester et al. proposed to minimize the energy functional

J(~u) =
1
2

M∑
m=1

∫
Ω

∣∣∣∣ ∇P(x)⊥

‖∇P(x)‖ · ∇um(x)

∣∣∣∣2 dx
+

λ

2

∫
Ω

(
M∑

m=1

αmum(x)− P(x)

)2

dx

+
µ

2

M∑
m=1

∫
Ω

ΠS ·
(
km ∗ um(x)− uΩ

m(x)
)2
dx ,

where λ, µ > 0 are trade-off parameters, and ~uΩ = (uΩ
1 , . . . , u

Ω
M) is an arbitrary

continuous extension of ~uS to the whole domain Ω.

ΠS =
∑

x∈S δx is a Dirac’s comb defined by sampling grid S .

9 / 29



Proposed Variational Model I

We proposed to replace the local by a non-local regularization term

J(~u) =
1
2

M∑
m=1

∫
Ω

∫
Ω

(
um(x)− um(y)

)2
ω(x , y)dxdy

+
λ

2

∫
Ω

(
M∑

m=1

αmum(x)− P(x)

)2

dx

+
µ

2

M∑
m=1

∫
Ω

ΠS ·
(
km ∗ um(x)− uΩ

m(x)
)2
dx ,

where the weights are computed on PAN:

ω(x , y) =
1

C(x)
e−

dρ(P(x),P(y))

h2 , C(x) =

∫
Ω

e−
d(P(x),P(y))

h2 dy ,

s.t. 0 ≤ ω(x , y) ≤ 1 and
∫

Ω
ω(x , y)dy = 1 ∀x ∈ Ω.

Weights are non symmetric
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Proposed Variational Model I
Mathematical Analysis

Lemma
J(~u) is strictly convex for any ~u ∈ A.

Theorem
If ~g = (g1, . . . , gM), with gm ∈ L2(Γ), then ∃! ~u∗ ∈ A s.t.

J(~u∗) = inf
~u∈A

J(~u).

For definitions of spaces A, Γ,Z and respective norms see

A. Buades, B. Coll, J. Duran, C. Sbert, “A Nonlocal Variational Model
for Pansharpening Image Fusion”. SIAM J. Imaging Sci., vol. 7(2),
pp:761-796, 2014.
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Proposed Variational Model I
Discrete Formulation

I PAN given on I = {0, 1, . . . ,N − 1} × {0, 1, . . . ,N − 1}.

I MS given on sampling grid S ⊆ I of size N
s
× N

s
, s sampling factor.

I Discrete functional:

J(~u) =
1
2

M∑
m=1

∑
p,q∈I

(um(p)− um(q))2ω(p, q)

+
λ

2

∑
p∈I

(
M∑

m=1

αmum(p)− P(p)

)2

+
µ

2

M∑
m=1

∑
p∈S

(km ∗ um(p)− uΩ
m(p))2.
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Proposed Variational Model I
Discrete Formulation

Explicit scheme for gradient descent method

u(n+1)
m (p) = u(n)

m (p)−∆t
∑
p,q∈I

(
u(n)
m (p)− u(n)

m (q)
)(
ω(p, q) + ω(q, p)

)
− ∆tλαm

(
M∑

k=1

αku
(n)
m (p)− P(p)

)
− ∆tµk t

m ∗
[
ΠS ·

(
km ∗ u(n)

m (p)− uΩ
m(p)

)]
, ∀p ∈ I , ∀1 ≤ m ≤ M.

I n ≥ 0 → iteration number.

I ∆t > 0 → time step in the descent direction.

I km → Gaussian kernels of s.d. σ = 1.2 if s = 2 and σ = 2.2 if s = 4.

I ΠS is a N × N matrix s.t.

ΠS(p) =

{
1 if p ∈ S ,
0 if p /∈ S ,

∀p ∈ I .
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Proposed Variational Model I
Discrete Formulation

I Discrete weights:

ω(p, q) =


1

C(p)
e−

1
h2

∑
t∈N0

‖P(p+t)−P(q+t)‖2 if ‖p − q‖ ≤ L,

0 otherwise.

I Regularity term restricted to pixels at a certain distance (7× 7 pixels).

I N0 → l × l window centered at (0, 0) (3× 3 pixels).

I Weights-filtering parameter → h = 1.25.

I Trade-off parameters → λ = 17.5 and µ = 17.5 · s2.

I Number of iterations → Niter = 50.
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Proposed Variational Model I
Experimental Results on Simulated Data
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Proposed Variational Model I
Experimental Results on Simulated Data

s = 2 s = 4
IHS BRV WVL PXS NLV I IHS BRV WVL PXS NLV I
1.16 1.14 1.80 1.54 1.05 1.93 1.91 2.26 2.15 1.60
1.42 1.40 2.58 1.97 1.37 2.23 2.21 2.96 2.64 1.83
1.03 0.99 1.90 1.43 0.87 1.72 1.68 2.17 1.94 1.34
2.08 2.07 2.71 1.92 1.68 2.62 2.62 2.89 2.54 2.26
2.43 2.43 3.21 2.24 2.10 3.02 3.02 3.44 2.86 2.52
1.42 1.41 1.96 1.26 1.18 1.83 1.82 2.11 1.70 1.49
1.75 1.74 2.92 2.46 1.45 3.04 3.03 3.68 3.47 2.29
0.99 0.98 1.46 0.88 0.82 1.33 1.32 1.59 1.22 1.04
1.27 1.25 2.36 1.95 1.14 2.21 2.20 2.86 2.60 1.63
1.51 1.49 2.32 1.74 1.30 2.21 2.20 2.66 2.35 1.78
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Proposed Variational Model I
Experimental Results on Simulated Data

Truth image
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Proposed Variational Model I
Experimental Results on Simulated Data

IHS pansharpened image
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Proposed Variational Model I
Experimental Results on Simulated Data

Brovey pansharpened image
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Proposed Variational Model I
Experimental Results on Simulated Data

Wavelets-based pansharpened image
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Proposed Variational Model I
Experimental Results on Simulated Data

P+XS pansharpened image
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Proposed Variational Model I
Experimental Results on Simulated Data

Proposed pansharpened image
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Real Satellite Data

I P and XS components not co-registered.

I Forbidden to register/resample XS because of aliasing.

I Panchromatic not a linear combination of MS components.

⇓

Modify proposed functional by decoupling the XS components and avoiding
the linearity constraint on the PAN w.r.t. XS components
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Proposed Variational Model II
Dropping Linearity Constraint

Drop the linearity constraint on PAN w.r.t. XS components:

P(x) ≡
M∑

m=1

αmum(x), ∀x ∈ Ω.

Truth image Result without constraint
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Proposed Variational Model II
New Constraint

Introduce the new constraint

um(x)

P(x)
=

ũm(x)

P̃(x)
, ∀x ∈ Ω,

where
I PS → PAN at the resolution of S by appropriate downsampling process,
I P̃ → extension of PS to the whole domain by bicubic interpolation,
I ũ → extension of ~uS to the whole domain by bicubic interpolation.

We can rewite the constraint as

um(x)− ũm(x)︸ ︷︷ ︸
high-frequencies of min

=
ũm(x)

P̃(x)
·
(
P(x)− P̃(x)

)
︸ ︷︷ ︸

high-frequencies of PAN

, ∀x ∈ Ω.

In a variational formulation:

M∑
m=1

∫
Ω

(
um(x)P̃(x)− ũm(x)P(x)

)2
dx .
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Proposed Variational Model II
Reformulation of the Energy

We propose to minimize the energy

J(~u) =
1
2

M∑
m=1

∫∫
Ω×Ω

(um(y)− um(x))2 ωP(x , y) dy dx

+
µs2

2

M∑
m=1

∫
Ω

ΠS(x)
(
km ∗ um(x)− uΩ

m(x)
)2

dx

+
δ

2‖P‖

M∑
m=1

∫
Ω

(
um(x)P̃(x)− ũm(x)P(x)

)2
dx ,

where µ, δ > 0 are trade-off parameters.
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Proposed Variational Model II
Reformulation of the Energy

Which can be minimized separately for each channel um

J(um) =
1
2

∫∫
Ω×Ω

(um(y)− um(x))2 ωP(x , y) dy dx

+
µs2

2

∫
Ω

ΠS(x)
(
km ∗ um(x)− uΩ

m(x)
)2

dx

+
δ

2‖P‖

∫
Ω

(
um(x)P̃(x)− ũm(x)P(x)

)2
dx ,

for each m ∈ {1, . . . ,M}.

We can now proceed as follows:

i) Superimpose PAN on each XS component.

ii) Solve the minimization problem for each um component independently.

iii) Superimpose all results (free from aliasing) in a common geometry.
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Proposed Variational Model II
Experimental Results on Simulated Data

Houses Parking Prison

I Simulate data at 30 cm from full color aerial images:
I PAN obtained as average of full color components,
I XS obtained as convolution plus subsampling from full color components.

I Literature model fully satisfied.
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Proposed Variational Model II
Experimental Results on Simulated Data

σ Image Bicubic IHS Brovey P+XS NLV I NLV II
1.
7

Houses 8.75 1.98 1.65 1.61 1.34 1.48
Parking 9.88 1.91 1.58 1.53 1.29 1.41
Prison 6.56 2.21 1.69 1.62 1.20 1.38
Avg. 8.40 2.03 1.64 1.59 1.28 1.42

1.
5

Houses 8.53 1.92 1.61 1.64 1.36 1.49
Parking 9.62 1.85 1.54 1.55 1.30 1.41
Prison 6.36 2.12 1.62 1.66 1.22 1.39
Avg. 8.17 1.96 1.59 1.62 1.29 1.43

1.
3

Houses 8.35 1.88 1.57 1.65 1.40 1.50
Parking 9.40 1.81 1.50 1.57 1.32 1.42
Prison 6.18 2.05 1.57 1.67 1.26 1.41
Avg. 7.98 1.91 1.55 1.63 1.33 1.44

Global Avg. 8.18 1.97 1.59 1.61 1.30 1.43
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Proposed Variational Model II
Experimental Results on Simulated Data

Full color image IHS Brovey

PXS NLV I NLV II
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Proposed Variational Model II
Experimental Results on Real Satellite Data

I Pléiades produces
I PAN image at 70 cm per pixel,
I 4 XS bands (blue, green, red and near-infrared) at 2.8 m per pixel.

I PAN is resampled into the reference of each XS component, thus
permitting the pansharpenning of each band separately as proposed for
Pléiades images2.

I Each high-resolution spectral component is obtained from the minimization
and then transformed into a common reference for visualization purposes.

2Latry, C. and Blanchet, G. and Fourest, S., Chaine de fusion P+XS Pléiades-HR, Proc.
GRETSI, 2013
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Proposed Variational Model II
Experimental Results on Real Satellite Data

Bicubic interpolation on a Toulouse scene captured by Pléiades.
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Proposed Variational Model II
Experimental Results on Real Satellite Data

Modified Brovey method on a Toulouse scene captured by Pléiades.
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Proposed Variational Model II
Experimental Results on Real Satellite Data

Proposed model on a Toulouse scene captured by Pléiades.
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