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Introduction

ROF image denoising model:

min
u∈BV(Ω)

TV(u) +
λ

2
‖u− f‖22,

with f ∈ L2(Ω,R) being the noisy image and λ > 0 a trade-off parameter.

Color images ~u : Ω→ RC , ~u(x) =
(
u1(x), . . . , uC(x)

)
, x = (x1, x2) ∈ Ω:

Vectorial Total Variation


coupling spatial derivatives

{
isotropic diffusion

anisotropic diffusion

coupling color channels

{
`1 − coupling

`2 − coupling
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Introduction

Channel-independent VTV:

C∑
k=1

∫
Ω

√(
∂x1uk(x)

)2
+
(
∂x2uk(x)

)2
dx

VTV with global coupling:(
C∑
k=1

(∫
Ω

√(
∂x1uk(x)

)2
+
(
∂x2uk(x)

)2
dx.

)2
)1/2

Pixel-by-pixel VTV:

∫
Ω

(
C∑
k=1

(
∂x1uk(x)

)2
+

C∑
k=1

(
∂x2uk(x)

)2)1/2

dx
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Nonlocal Total Variation

Neighbourhood filters → Extend TV to nonlocal regularization:

NF [u](x) =
1

C(x)

∫
Ω
ωu0 (x, y)u(y) dy,

where C(x) =
∫
Ω ωu0 (x, y)dy, and ωu0 : Ω× Ω→ R is the weight distribution.

Regularity assumption → self-similarity

Non-local means filter:

ωu0 (x, y) = e
− dρ(u0(x),u0(y))

h2

dρ(f(x), f(y)) =

∫
Ω
Gρ(t)|u0(x+ t)− u0(y + t)|2dt.
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Nonlocal Total Variation

Nonlocal operators for grayscale images u : Ω→ R

Nonlocal gradient:

∇ωu(x, y) =
(
u(y)− u(x)

)√
ω(x, y), ∀y ∈ Ω.

Nonlocal “isotropic” TV:∫
Ω

√∫
Ω

(u(y)− u(x))2 ω(x, y) dy dx.

Nonlocal “anisotropic” TV:∫
Ω

∫
Ω
|u(y)− u(x)|

√
ω(x, y) dy dx.

Nonlocal Vectorial TV → coupling channels with `2 − norm: C∑
k=1

(∫
Ω

√∫
Ω

(uk(y)− uk(x))2 ω(x, y) dy dx

)2
1/2
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Proposed Framework for VTV

Color image as N × C matrix:

u = (u1, . . . , uc) ∈ RN×C s.t. uk ∈ RN , ∀k ∈ {1, . . . , C}.

The Jacobi matrix at each pixel defines a 3D tensor s.t.

Ku ≡ (Ku)i,j,k ∈ RN×M×C .

E.g., i ∈ {1, . . . , N} corresponds to pixels, j ∈ {1, . . . ,M} to local or nonlocal
derivatives, and k ∈ {1, . . . , C} to color channels.

We propose to regularize 3D tensor with mixed matrix norms.

Definition

Let A ∈ RN×M×C be a 3D-matrix. The mixed matrix `p,q,r norm is defined as

‖A‖p,q,r =

 N∑
i=1

 M∑
j=1

(
C∑
k=1

|Ai,j,k|p
)q/pr/q


1/r

.
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Proposed Framework for VTV

Schatten p−norms

Compute SVD of the submatrix(
∂x1u1(x) ∂x1u2(x) ∂x1u3(x)
∂x2u1(x) ∂x2u2(x) ∂x2u3(x)

)
(1)

and penalize the singular values with `p−norm:

`1− Nuclear norm.

Convex relaxation of minimizing the rank of (1).

Encourage gradients (jumps) to point into the same direction.

`2− Frobenius norm.

Schatten ∞−norm penalizes the largest singular value.

Definition

Let A ∈ RN×M×C be a 3D-matrix. The mixed matrix Schatten (Sp, `q) norm as

(Sp, `q)(A) =

 N∑
i=1

∥∥∥∥∥∥∥
 Ai,1,1 · · · Ai,1,C

...
. . .

...
Ai,M,1 · · · Ai,M,C


∥∥∥∥∥∥∥
q

Sp


1/q
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Proposed Framework for VTV

Mixed matrix norms are not invariant to permutations

↙ ↘

`p,q,r(col, der, pix)
(
Sp(col, der), `q(pix)

)
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Proposed Framework for VTV

Unifying Vectorial Total Variation

Background Continuous Formulation Our Framework

Isotropic
uncoupled

∫
Ω

C∑
k=1

√
(∂x1

uk(x))2 + (∂x2
uk(x))2dx `2,1,1(der, col, pix)

Anisotropic
uncoupled

∫
Ω

C∑
k=1

(
|∂x1uk(x)|+ |∂x2uk(x)|

)
dx `1,1,1(der, col, pix)

Blomgren
Chan

√√√√ C∑
k=1

(∫
Ω

√
(∂x1

uk(x))2 + (∂x2
uk(x))2dx

)2

`2,1,2(der, pix, col)

Anisotropic
version

√√√√ C∑
k=1

(∫
Ω

(
|∂x1

uk(x)|+ |∂x2
uk(x)|

)
dx

)2

`1,1,2(der, pix, col)

Bresson
Chan

∫
Ω

√√√√ C∑
k=1

(
∂x1

uk(x)
)2 +

∑
k

(
∂x2

uk(x)
)2dx `2,2,1(col, der, pix)

Anisotropic
version

∫
Ω

√√√√ C∑
k=1

(
|∂x1

uk(x)|+ |∂x2
uk(x)|

)2dx `1,2,1(der, col, pix)
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Proposed Framework for VTV

Background Continuous Formulation Our Framework

Anisotropic
variant

∫
Ω


√√√√ C∑
k=1

(
∂x1

uk(x)
)2+
√√√√ C∑
k=1

(
∂x2

uk(x)
)2dx `2,1,1(col, der, pix)

Strong

coupling

∫
Ω

(
max
k
|∂x1uk(x)|+ max

k
|∂x2uk(x)|

)
dx `∞,1,1(col, der, pix)

Isotropic

version

∫
Ω

√(
max
k
|∂x1uk(x)|

)2+ (max
k
|∂x2uk(x)|

)2dx `∞,2,1(col, der, pix)

Isotropic

variant

∫
Ω

max
k

√(
∂x1uk(x)

)2 +
(
∂x2uk(x)

)2dx `2,∞,1(der, col, pix)

Sapiro

∫
Ω

∥∥∥∥∥∥∥
 (

∂x1
uk(x)

)
k=1,...,C(

∂x2
uk(x)

)
k=1,...,C


∥∥∥∥∥∥∥
S1

dx (S1(col, der), `1(pix))

Sapiro

Goldluecke

∫
Ω

∥∥∥∥∥∥∥
 (

∂x1
uk(x)

)
k=1,...,C(

∂x2
uk(x)

)
k=1,...,C


∥∥∥∥∥∥∥
S∞

dx (S∞(col, der), `1(pix))
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Proposed Framework for VTV

Background Continuous Formulation Our Framework

Isotropic

uncoupled

∫
Ω

(
C∑
k=1

√∫
Ω

(uk(y)− uk(x))2 ω(x, y) dy
)
dx `2,1,1(der, col, pix)

Anisotropic

uncoupled

∫
Ω

(
C∑
k=1

∫
Ω

|u(y)− u(x)|
√
ω(x, y) dy

)
dx `1,1,1(der, col, pix)

Duan

Pan, Tai

√√√√ C∑
k=1

(∫
Ω

√∫
Ω

(uk(y)− uk(x))2 ω(x, y) dy dx
)2

`2,1,2(der, pix, col)

Anisotropic

coupled

∫
Ω

∫
Ω

√√√√ C∑
k=1

(uk(y)− uk(x))2 ω(x, y) dy dx `2,1,1(col, der, pix)

Isotropic

coupled

∫
Ω

√√√√∫
Ω

C∑
k=1

(uk(y)− uk(x))2 ω(x, y) dy dx `2,2,1(col, der, pix)

Strong

coupling

∫
Ω

∫
Ω

max
k

(
(uk(y)− uk(x))2 ω(x, y)

)
dy dx `∞,1,1(col, der, pix)
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Which is the best channel coupling?

Noisy `1,1,1(col, der, pix)

`2,1,1(col, der, pix) `∞,1,1(col, der, pix)
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Which is the best channel coupling?

Noisy `1,1,1(col, der, pix) `2,2,1(col, der, pix)

`∞,1,1(col, der, pix) (S1(col, der), `1(pix)) (S∞(col, der), `1(pix))
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Which is the best channel coupling?

Noisy `1,1,1(col, der, pix) `2,2,1(col, der, pix)

`∞,1,1(col, der, pix) (S1(col, der), `1(pix)) (S∞(col, der), `1(pix))
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Proximal Resolution of the Minimization Problem

Consider the saddle-point problem:

min
u∈X,g∈Y

max
z∈Y
{G(u) + 〈Ku− g, z〉+ F (g)} ,

where X = RN×C , Y = RN×M×C , and G : X → R and F : Y → R are proper
convex l.s.c. functionals. The optimality conditions are:

−KT ẑ ∈ ∂G (û) , ĝ ∈ ∂F ∗(ẑ), ĝ = Kû.

The Primal-Dual Hybrid Gradient (PDHG) method computes the solution as

un+1 = proxτnG
(
un − τnKT zn

)
, ← Gradient descent step in u

ūn+1 = un+1 +
(
un+1 − un

)
, ← Over-relaxation step in u

gn+1 = prox 1
σn

F

(
Kūn+1 +

zn

σn

)
, ← Gradient ascent step in g

zn+1 = zn + σn
(
Kūn+1 − gn+1

)
, ← Gradient ascent step in z

where τn, σn > 0 are step-size parameters.
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Proximal Resolution of the Minimization Problem

The proximity operator of F is defined by

prox 1
σ
F (z) = arg min

s∈Y

{
1

2
‖s− z‖2F +

1

σ
F (s)

}
.

Proximity operators of `p,q,r norms

`1,1,1−norm:(
prox 1

σ
‖·‖1,1,1 (A)

)
i,j,k

= max

(
|Ai,j,k| −

1

σ
, 0

)
sign

(
Ai,j,k

)
.

`2,1,1−norm:(
prox 1

σ
‖·‖2,1,1 (A)

)
i,j,k

= max

(
‖Ai,j,:‖2 −

1

σ
, 0

)
Ai,j,k

‖Ai,j,:‖2
,

and similar for `2,2,1−norm.

`∞,1,1−norm:(
prox 1

σ
‖·‖∞,1,1 (A)

)
i,j,k

= Ai,j,k −
1

σ
sign

(
Ai,j,k

) (
proj‖·‖1≤1 (σ|Ai,j,:|)

)
i,j,k

,

and similar for `∞,∞,1−norm.
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Proximal Resolution of the Minimization Problem

`∞,2,1−norm:(
prox 1

σ
‖·‖∞,2,1 (A)

)
i,j,k

= Ai,j,k−
1

σ
sign

(
Ai,j,k

) (
proj‖·‖1,2≤1 (σ|Ai,:,:|)

)
i,j,k

.

`2,∞,1−norm is computed using the following result:

Theorem

Let f : Rn×m → Rn be fi(u) :=
√∑m

j=1 u
2
i,j = ‖ui,:‖2, and let g : Rn → R be a

proper convex function being nondecreasing in each argument. Then(
proxτ(g◦f)(u)

)
i,j

=
ui,j

‖ui,:‖2
max

(
‖ui,:‖2 − τvi, 0

)
,

where the vi’s are the components of the vector v ∈ Rn that solves

v = arg min
w∈Rn

1

2

∥∥∥∥w − 1

τ
f(u)

∥∥∥∥2

+
1

τ
g∗(w).
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Proximal Resolution of the Minimization Problem

`∞,2,1−norm:(
prox 1

σ
‖·‖∞,2,1 (A)

)
i,j,k

= Ai,j,k−
1

σ
sign

(
Ai,j,k

) (
proj‖·‖1,2≤1 (σ|Ai,:,:|)

)
i,j,k

.

`2,∞,1−norm:(
prox 1

σ
‖·‖2,∞,1 (A)

)
i,j,k

=
Ai,j,k

‖Ai,j,:‖2
max

(
‖Ai,j,:‖2 −

1

σ
vi,j , 0

)
,

where vi,j =
(

prox‖·‖1≤1

(
σ
(
‖Ai,j,:‖2

)
j

))
i,j

, and
(
‖Ai,j,:‖2

)
j

denotes the

vector obtained by stracking ‖Ai,j,:‖2 for all j.
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Experimental Results on Image Denoising

The image denoising minimization problem is

min
u∈RN×C

‖Ku‖+
λ

2
‖u− f‖2F ,

where f ∈ RN×C is the noisy image, λ > 0 the regularization parameter, and ‖ · ‖
denotes either an `p,q,r norm or a Schatten (Sp, `q) norm.

The proximity operator of G(u) = λ
2
‖u− f‖2F is

proxτG(u) = arg min
v∈X

{
1

2
‖v − u‖2F + τ

λ

2
‖v − f‖2F

}
⇔ proxτG(u) =

u+ τλf

1 + τλ
.
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Experimental Results on Image Denoising

Influence of the Regularization Parameter

Figure : Comparison of different matrix TV regularizations for color denoising using different λ
values on data with Gaussian noise of standard deviation 25.
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Experimental Results on Image Denoising

Figure : Noisy image with noise s.t. 25. PSNR = 20.74.
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Experimental Results on Image Denoising

Figure : `∞,1,1−regularization with λ = 0.1. PSNR = 24.92.
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Experimental Results on Image Denoising

Figure : `∞,1,1−regularization with λ = 0.05. PSNR = 27.62.
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Experimental Results on Image Denoising

Figure : `∞,1,1−regularization with optimal λ = 0.04. PSNR = 27.93.
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Experimental Results on Image Denoising

Figure : `∞,1,1−regularization with λ = 0.03. PSNR = 27.55.
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Experimental Results on Image Denoising

Figure : `∞,1,1−regularization with λ = 0.01. PSNR = 24.09.
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Experimental Results on Image Denoising

Kodak Database

Kodak 1 Kodak 2 Kodak 3 Kodak 4

Kodak 5 Kodak 6 Kodak 7 Kodak 8

Kodak 9 Kodak 10 Kodak 11 Kodak 12
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Experimental Results on Image Denoising

Nonlocal Color TV Denoising

Kodak Noisy `1,1,1 `2,1,1 `2,2,1 `∞,1,1

1 26.15 31.01 31.14 31.07 31.20
2 26.14 31.23 31.36 31.21 31.44
3 26.17 31.78 31.88 31.76 31.99
4 26.08 34.38 35.06 34.66 35.03
5 26.10 35.02 35.69 35.35 35.73
6 26.11 29.28 29.37 29.30 29.60
7 26.08 31.64 31.70 31.58 31.77
8 26.31 33.88 34.24 34.02 34.29
9 26.98 34.40 34.74 34.67 34.78
10 26.06 32.21 32.50 32.36 32.61
11 26.06 32.31 32.39 32.27 32.45
12 26.09 35.17 35.93 35.33 35.94

Avg. 26.19 32.69 33.00 32.80 33.07

Table : For each matrix TV method, the optimal λ and h in terms of PSNR were computed on
the first Kodak image and then used on the others. The input noise s.d. was 12.75.
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Experimental Results on Image Denoising

Figure : Clean image.

J. Duran, M. Moeller, C. Sbert, D. Cremers A Novel Framework for NL-VTV Based on `p,q,r− Norms



Experimental Results on Image Denoising

Figure : Noisy image with noise s.d. 12.75. PSNR = 26.09.
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Experimental Results on Image Denoising

Figure : `1,1,1−NLTV regularization. PSNR = 35.17.
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Experimental Results on Image Denoising

Figure : `2,1,1−NLTV regularization. PSNR = 35.93.
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Experimental Results on Image Denoising

Figure : `2,2,1−NLTV regularization. PSNR = 35.33.
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Experimental Results on Image Denoising

Figure : `∞,1,1−NLTV regularization. PSNR = 35.94.

J. Duran, M. Moeller, C. Sbert, D. Cremers A Novel Framework for NL-VTV Based on `p,q,r− Norms



Experimental Results on Image Denoising

Figure : Clean image.
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Experimental Results on Image Denoising

Figure : Noisy image with noise s.d. 12.75. PSNR = 26.10.
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Experimental Results on Image Denoising

Figure : `1,1,1−TV regularization. PSNR = 33.60.
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Experimental Results on Image Denoising

Figure : `1,1,1−NLTV regularization. PSNR = 35.41.
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Experimental Results on Image Denoising

Figure : `∞,1,1−TV regularization. PSNR = 34.88.
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Experimental Results on Image Denoising

Figure : `∞,1,1−NLTV regularization. PSNR = 35.65.
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Experimental Results on Image Denoising

Local Color TV Denoising

Noisy `1,1,1 `2,1,1 `2,2,1 `∞,1,1 `∞,2,1 `2,∞,1 (S1, `1) (S∞, `1)
1 24.78 28.14 29.07 28.51 29.90 29.19 29.07 29.20 27.96
2 24.76 28.54 29.48 29.22 30.18 29.87 29.66 29.83 28.62
3 24.80 29.20 30.15 29.81 30.85 30.51 30.25 30.33 29.24
4 24.68 30.92 32.22 31.80 32.73 32.71 32.13 32.32 31.01
5 24.71 31.50 32.75 32.41 33.13 33.30 32.64 32.81 31.65
6 24.72 27.36 28.19 27.98 29.01 28.64 28.52 28.59 27.47
7 24.71 29.46 30.39 30.12 30.86 30.71 30.35 30.57 29.53
8 24.96 31.08 32.10 31.84 32.41 32.40 32.02 32.20 31.22
9 25.68 30.92 31.74 31.54 32.10 32.00 31.78 31.85 31.11
10 24.66 29.75 30.81 30.49 31.48 31.29 30.94 31.05 29.84
11 24.66 30.14 31.10 30.84 31.49 31.46 31.07 31.22 30.25
12 24.71 31.85 33.15 32.84 33.45 33.69 33.03 33.25 32.05

24.82 29.91 30.93 30.62 31.47 31.31 30.96 31.10 30.00

Table : For each matrix TV method, the optimal λ in terms of PSNR was computed on the first
Kodak image and then used on the others. The input noise s.d. was 15.
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Experimental Results on Image Denoising

Figure : Clean image.
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Experimental Results on Image Denoising

Figure : Noise image with noise s.d. 15. PSNR = 24.78

J. Duran, M. Moeller, C. Sbert, D. Cremers A Novel Framework for NL-VTV Based on `p,q,r− Norms



Experimental Results on Image Denoising

Figure : `1,1,1−TV regularization. PSNR = 28.14.
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Experimental Results on Image Denoising

Figure : `2,1,1−TV regularization. PSNR = 29.07.
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Experimental Results on Image Denoising

Figure : `2,2,1−TV regularization. PSNR = 28.51.
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Experimental Results on Image Denoising

Figure : `∞,1,1−TV regularization. PSNR = 29.90.
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Experimental Results on Image Denoising

Figure : `∞,2,1−TV regularization. PSNR = 29.19.

J. Duran, M. Moeller, C. Sbert, D. Cremers A Novel Framework for NL-VTV Based on `p,q,r− Norms



Experimental Results on Image Denoising

Figure : `2,∞,1−TV regularization. PSNR = 29.07.
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Experimental Results on Image Denoising

Figure : (S1, `1)−TV regularization. PSNR = 29.20.
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Experimental Results on Image Denoising

Figure : (S∞, `1)−TV regularization. PSNR = 27.96.
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Conclusions and Future Work

We proposed a novel framework that unifies vectorial TV regularizations.

The gradient of a color image was interpreted as a 3D tensor using pixels, (local
or nonlocal) derivatives, and color channels.

We considered several `p,q,r and (Sp, `q) matrix norms.

Based on our experiments, we exhibited the superiority of using `∞ inter-channel
coupling for a stronger suppression of color artifacts in natural images.

Future work will mainly concentrate on:

- development of more mixed matrix norms for TV and NLTV regularizations;

- study of permutations in the dimensions of the 3D tensor;

- application of color transformations;

- mathematical properties of mixed matrix norms;

- application to other image restoration problems.

J. Duran, M. Moeller, C. Sbert, D. Cremers A Novel Framework for NL-VTV Based on `p,q,r− Norms



References

J. Duran, M. Moeller, C. Sbert, D. Cremers, Mixed Matrix Norms for Vector
Valued Total Variation Regularization, preprint, 2015.

J. Duran, M. Moeller, C. Sbert, D. Cremers, Color TV Denoising Using Mixed
Matrix Norms. Image Process. On Line, preprint, 2015.

Acknowledgements

J.D. and C.S. were supported by the Ministerio de Ciencia e Innovación under grant
TIN2011-27539.

M.M. and D.C. were supported by ERC starting grant “Convex Vision”.

J.D. acknowledges the fellowship of the Conselleria d’Educació, Cultura i Universitats
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