A Novel Framework for Nonlocal Vectorial Total Variation Based on $\ell^{p,q,r}$ – Norms 10th EMMCVPR, HKUST, Hong Kong

J. Duran^{1,2}, M. Moeller², C. Sbert¹ and D. Cremers² {joan.duran, catalina.sbert}@uib.es, {michael.moeller, cremers}@in.tum.de

January 15th, 2015

¹Dept. Mathematics & Computer Science University of Balearic Islands Palma de Mallorca, Spain

²Dept. Mathematics & Computer Science Technical University of Munich Garching, Germany

Introduction

• ROF image denoising model:

$$\min_{u \in \mathsf{BV}(\Omega)} \mathsf{TV}(u) + \frac{\lambda}{2} \|u - f\|_2^2,$$

with $f \in L^2(\Omega, \mathbb{R})$ being the noisy image and $\lambda > 0$ a trade-off parameter.

• Color images
$$\vec{u}: \Omega \to \mathbb{R}^C$$
, $\vec{u}(x) = (u_1(x), \dots, u_C(x))$, $x = (x_1, x_2) \in \Omega$:

 $\begin{array}{l} \mbox{Vectorial Total Variation} \\ \left\{ \begin{array}{l} \mbox{coupling spatial derivatives} \\ \mbox{coupling color channels} \\ \end{array} \right. \\ \left\{ \begin{array}{l} \mbox{isotropic diffusion} \\ \mbox{anisotropic diffusion} \\ \mbox{equation} \\ \mbox{equation} \\ \mbox{equation} \\ \mbox{equation} \end{array} \right. \\ \left\{ \begin{array}{l} \mbox{isotropic diffusion} \\ \mbox{anisotropic diffusion} \\ \mbox{equation} \\ \mbox{equation} \\ \mbox{equation} \end{array} \right. \\ \left\{ \begin{array}{l} \mbox{isotropic diffusion} \\ \mbox{equation} \\ \mbox{equation} \\ \mbox{equation} \end{array} \right. \\ \left\{ \begin{array}{l} \mbox{isotropic diffusion} \\ \mbox{equation} \\ \mbox{equation} \\ \mbox{equation} \end{array} \right. \\ \left\{ \begin{array}{l} \mbox{equation} \\ \mbox{equation} \\ \mbox{equation} \end{array} \right. \\ \left\{ \begin{array}{l} \mbox{equation} \\ \mbox{equation} \\ \mbox{equation} \end{array} \right. \\ \left\{ \begin{array}{l} \mbox{equation} \end{array} \right. \\ \left\{ \mbox{equation} \end{array} \right. \\ \left\{ \begin{array}{l} \mbox{equation} \end{array} \right. \\ \left\{ \begin{array}{l} \mbox{equation} \end{array} \right. \\ \left\{ \begin{array}{l} \mbox{equation}$

- * 母 * * き * * き * - き - めへの

• Channel-independent VTV:

$$\sum_{k=1}^{C} \int_{\Omega} \sqrt{\left(\partial_{x_1} u_k(x)\right)^2 + \left(\partial_{x_2} u_k(x)\right)^2} dx$$

• VTV with global coupling:

$$\left(\sum_{k=1}^{C} \left(\int_{\Omega} \sqrt{\left(\partial_{x_1} u_k(x)\right)^2 + \left(\partial_{x_2} u_k(x)\right)^2} \, dx.\right)^2\right)^{1/2}$$

• Pixel-by-pixel VTV:

$$\int_{\Omega} \left(\sum_{k=1}^{C} \left(\partial_{x_1} u_k(x) \right)^2 + \sum_{k=1}^{C} \left(\partial_{x_2} u_k(x) \right)^2 \right)^{1/2} dx$$

(注) → (注) →

< 🗇 🕨

э.

Nonlocal Total Variation

Neighbourhood filters \rightarrow Extend TV to nonlocal regularization:

$$NF[u](x) = \frac{1}{C(x)} \int_{\Omega} \omega_{u_0}(x, y) u(y) \, dy,$$

where $C(x)=\int_\Omega \omega_{u_0}(x,y)dy$, and $\omega_{u_0}:\Omega\times\Omega\to\mathbb{R}$ is the weight distribution.

Regularity assumption \rightarrow self-similarity

Non-local means filter:

$$\omega_{u_0}(x,y) = e^{-\frac{d_{\rho}(u_0(x), u_0(y))}{h^2}}$$

$$d_{\rho}(f(x), f(y)) = \int_{\Omega} G_{\rho}(t) |u_0(x+t) - u_0(y+t)|^2 dt.$$

Nonlocal Total Variation

Nonlocal operators for grayscale images $u: \Omega \to \mathbb{R}$

• Nonlocal gradient:

$$abla_{\omega}u(x,y) = (u(y) - u(x))\sqrt{\omega(x,y)}, \ \forall y \in \Omega.$$

• Nonlocal "isotropic" TV:

$$\int_{\Omega} \sqrt{\int_{\Omega} (u(y) - u(x))^2 \,\omega(x, y) \, dy \, dx}.$$

• Nonlocal "anisotropic" TV:

$$\int_{\Omega} \int_{\Omega} |u(y) - u(x)| \sqrt{\omega(x,y)} \, dy \, dx.$$

Nonlocal Vectorial TV \rightarrow coupling channels with $\ell^2 - norm$:

$$\left(\sum_{k=1}^C \left(\int_\Omega \sqrt{\int_\Omega \left(u_k(y) - u_k(x)\right)^2 \omega(x, y) \, dy} \, dx\right)^2\right)^{1/2}$$

• Color image as $N \times C$ matrix:

$$\mathbf{u} = (u_1, \dots, u_c) \in \mathbb{R}^{N \times C} \text{ s.t. } u_k \in \mathbb{R}^N, \ \forall k \in \{1, \dots, C\}.$$

• The Jacobi matrix at each pixel defines a 3D tensor s.t.

$$K\mathbf{u} \equiv (Ku)_{i,j,k} \in \mathbb{R}^{N \times M \times C}.$$

E.g., $i \in \{1, ..., N\}$ corresponds to pixels, $j \in \{1, ..., M\}$ to local or nonlocal derivatives, and $k \in \{1, ..., C\}$ to color channels.

We propose to regularize 3D tensor with mixed matrix norms.

Definition

Let $A \in \mathbb{R}^{N \times M \times C}$ be a 3D-matrix. The mixed matrix $\ell^{p,q,r}$ norm is defined as

$$\|A\|_{p,q,r} = \left(\sum_{i=1}^{N} \left(\sum_{j=1}^{M} \left(\sum_{k=1}^{C} |A_{i,j,k}|^{p}\right)^{q/p}\right)^{r/q}\right)^{1/r}$$

Schatten *p*-norms

Compute SVD of the submatrix

$$\begin{pmatrix} \partial_{x_1} u_1(x) & \partial_{x_1} u_2(x) & \partial_{x_1} u_3(x) \\ \partial_{x_2} u_1(x) & \partial_{x_2} u_2(x) & \partial_{x_2} u_3(x) \end{pmatrix}$$
(1)

and penalize the singular values with ℓ^p -norm:

- ℓ^1 Nuclear norm.
 - Convex relaxation of minimizing the rank of (1).
 - Encourage gradients (jumps) to point into the same direction.
- ℓ^2 Frobenius norm.
- Schatten ∞ -norm penalizes the largest singular value.

Definition

Let $A \in \mathbb{R}^{N \times M \times C}$ be a 3D-matrix. The mixed matrix Schatten (S^p, ℓ^q) norm as

$$(S^p, \ell^q)(A) = \left(\sum_{i=1}^N \left\| \left(\begin{array}{ccc} A_{i,1,1} & \cdots & A_{i,1,C} \\ \vdots & \ddots & \vdots \\ A_{i,M,1} & \cdots & A_{i,M,C} \end{array} \right) \right\|_{S^p}^q \right)^{1/q}$$

Mixed matrix norms are not invariant to permutations

Unifying Vectorial Total Variation

Background	Continuous Formulation	Our Framework	
lsotropic uncoupled	$\int_{\Omega} \sum_{k=1}^{C} \sqrt{(\partial_{x_1} u_k(x))^2 + (\partial_{x_2} u_k(x))^2} dx$	$\ell^{2,1,1}(der, col, pix)$	
Anisotropic uncoupled	$\int_{\Omega} \sum_{k=1}^{C} \left(\partial_{x_1} u_k(x) + \partial_{x_2} u_k(x) \right) dx$	$\ell^{1,1,1}(der, col, pix)$	
Blomgren Chan	$\left \sqrt{\sum_{k=1}^C \left(\int_\Omega \sqrt{(\partial_{x_1} u_k(x))^2 + (\partial_{x_2} u_k(x))^2} dx \right)^2} \right.$	$\ell^{2,1,2}(der, pix, col)$	
Anisotropic version	$= \sqrt{\sum_{k=1}^{C} \left(\int_{\Omega} \left(\partial_{x_1} u_k(x) + \partial_{x_2} u_k(x) \right) dx \right)^2}$	$\ell^{1,1,2}(der, pix, col)$	
Bresson Chan	$\int_{\Omega} \sqrt{\sum_{k=1}^{C} \left(\partial_{x_1} u_k(x)\right)^2 + \sum_k \left(\partial_{x_2} u_k(x)\right)^2} dx$	$\ell^{2,2,1}(col, der, pix)$	
Anisotropic version	$\int_{\Omega} \sqrt{\sum_{k=1}^{C} \left(\partial_{x_1} u_k(x) + \partial_{x_2} u_k(x) \right)^2} dx$	$\ell^{1,2,1}(der, col, pix)$	

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Proposed Framework for VTV

Background	Continuous Formulation	Our Framework		
Anisotropic variant	$\int_{\Omega} \left(\sqrt{\sum_{k=1}^{C} \left(\partial_{x_1} u_k(x) \right)^2} + \sqrt{\sum_{k=1}^{C} \left(\partial_{x_2} u_k(x) \right)^2} \right) dx$	$\ell^{2,1,1}(col, der, pix)$		
Strong coupling	$\int_\Omega \left(\max_k \partial_{x_1} u_k(x) + \max_k \partial_{x_2} u_k(x) \right) dx$	$\ell^{\infty,1,1}(col, der, pix)$		
lsotropic version	$\int_{\Omega} \sqrt{\left(\max_{k} \partial_{x_{1}} u_{k}(x) \right)^{2} + \left(\max_{k} \partial_{x_{2}} u_{k}(x) \right)^{2}} dx$	$\ell^{\infty,2,1}(col, der, pix)$		
lsotropic variant	$\int_{\Omega} \max_{k} \sqrt{\left(\partial_{x_1} u_k(x)\right)^2 + \left(\partial_{x_2} u_k(x)\right)^2} dx$	$\ell^{2,\infty,1}(der,col,pix)$		
Sapiro	$\int_{\Omega} \left\ \left(\begin{array}{c} \left(\partial_{x_1} u_k(x) \right)_{k=1,\dots,C} \\ \left(\partial_{x_2} u_k(x) \right)_{k=1,\dots,C} \end{array} \right) \right\ _{S^1} dx$	$(S^1(col, der), \ell^1(pix))$		
Sapiro Goldluecke	$\int_{\Omega} \left\ \left(\begin{array}{c} \left(\partial_{x_1} u_k(x) \right)_{k=1,\dots,C} \\ \left(\partial_{x_2} u_k(x) \right)_{k=1,\dots,C} \end{array} \right) \right\ _{S^{\infty}} dx$	$(S^{\infty}(col, der), \ell^1(pix))$		

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Proposed Framework for VTV

Background	Continuous Formulation	Our Framework		
lsotropic uncoupled	$\int_{\Omega} \left(\sum_{k=1}^{C} \sqrt{\int_{\Omega} (u_k(y) - u_k(x))^2 \omega(x, y) dy} \right) dx$	$\ell^{2,1,1}(der, col, pix)$		
Anisotropic uncoupled	$\int_{\Omega} \left(\sum_{k=1}^{C} \int_{\Omega} u(y) - u(x) \sqrt{\omega(x, y)} dy \right) dx$	$\ell^{1,1,1}(der, col, pix)$		
Duan Pan, Tai	$\sqrt{\sum_{k=1}^{C} \left(\int_{\Omega} \sqrt{\int_{\Omega} (u_k(y) - u_k(x))^2 \omega(x, y) dy dx \right)^2}$	$\ell^{2,1,2}(der,pix,col)$		
Anisotropic coupled	$\int_{\Omega} \int_{\Omega} \sqrt{\sum_{k=1}^{C} (u_k(y) - u_k(x))^2 \omega(x, y)} dy dx$	$\ell^{2,1,1}(col, der, pix)$		
lsotropic coupled	$\int_{\Omega} \sqrt{\int_{\Omega} \sum_{k=1}^{C} (u_k(y) - u_k(x))^2 \omega(x, y) dy} dx$	$\ell^{2,2,1}(col, der, pix)$		
Strong coupling	$\int_{\Omega} \int_{\Omega} \max_{k} \left(\left(u_{k}(y) - u_{k}(x) \right)^{2} \omega(x, y) \right) dy dx$	$\ell^{\infty,1,1}(col, der, pix)$		

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Which is the best channel coupling?

Which is the best channel coupling?

Which is the best channel coupling?

Noisy

 $\ell^{\infty,1,1}(col, der, pix)$

 $\ell^{1,1,1}(\mathit{col},\mathit{der},\mathit{pix})$

 $(S^1(col,der),\ell^1(pix))$

 $\ell^{2,2,1}(col,der,pix)$

 $(S^\infty(col,der),\ell^1(pix))$

3

Consider the saddle-point problem:

$$\min_{u \in X, g \in Y} \max_{z \in Y} \left\{ G(u) + \langle Ku - g, z \rangle + F(g) \right\},\$$

where $X = \mathbb{R}^{N \times C}$, $Y = \mathbb{R}^{N \times M \times C}$, and $G: X \to \mathbb{R}$ and $F: Y \to \mathbb{R}$ are proper convex l.s.c. functionals. The optimality conditions are:

$$-K^T \widehat{z} \in \partial G(\widehat{u}), \quad \widehat{g} \in \partial F^*(\widehat{z}), \quad \widehat{g} = K \widehat{u}.$$

The Primal-Dual Hybrid Gradient (PDHG) method computes the solution as

- $u^{n+1} = \operatorname{prox}_{\tau_n G} \left(u^n \tau_n K^T z^n \right), \quad \leftarrow \quad \text{Gradient descent step in } u$
- $g^{n+1} = \operatorname{prox}_{\frac{1}{\sigma_n}F}\left(K\bar{u}^{n+1} + \frac{z^n}{\sigma_n}\right), \quad \leftarrow \quad \text{Gradient ascent step in } g$ $z^{n+1} = z^n + \sigma_n \left(K \bar{u}^{n+1} - g^{n+1} \right), \quad \leftarrow \quad \text{Gradient ascent step in } z$
- $\bar{u}^{n+1} = u^{n+1} + (u^{n+1} u^n), \quad \leftarrow \quad \text{Over-relaxation step in } u$

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q (~)

where $\tau_n, \sigma_n > 0$ are step-size parameters.

Proximal Resolution of the Minimization Problem

The proximity operator of F is defined by

$$\operatorname{prox}_{\frac{1}{\sigma}F}(z) = \arg\min_{s\in Y} \left\{ \frac{1}{2} \|s-z\|_F^2 + \frac{1}{\sigma}F(s) \right\}.$$

Proximity operators of $\ell^{p,q,r}$ norms

• $\ell^{1,1,1}$ -norm:

$$\Bigl(\operatorname{prox}_{\frac{1}{\sigma}\|\cdot\|_{1,1,1}}(A)\Bigr)_{i,j,k} = \max\Bigl(|A_{i,j,k}| - \frac{1}{\sigma}, 0\Bigr)\operatorname{sign}\bigl(A_{i,j,k}\bigr).$$

• $\ell^{2,1,1}$ -norm:

$$\left(\mathsf{prox}_{\frac{1}{\sigma}\|\cdot\|_{2,1,1}}(A)\right)_{i,j,k} = \max\left(\|A_{i,j,:}\|_2 - \frac{1}{\sigma}, 0\right) \frac{A_{i,j,k}}{\|A_{i,j,:}\|_2}$$

and similar for $\ell^{2,2,1}$ -norm.

• $\ell^{\infty,1,1}$ -norm:

$$\left(\operatorname{prox}_{\frac{1}{\sigma}\|\cdot\|_{\infty,1,1}}(A)\right)_{i,j,k} = A_{i,j,k} - \frac{1}{\sigma}\operatorname{sign}\left(A_{i,j,k}\right)\left(\operatorname{proj}_{\|\cdot\|_1 \leq 1}\left(\sigma|A_{i,j,:}|\right)\right)_{i,j,k} + \frac{1}{\sigma}\operatorname{sign}\left(A_{i,j,i}\right)\left(\operatorname{proj}_{\|\cdot\|_1 \leq 1}\left(\sigma|A_{i,j,:}|\right)\right)_{i,j,k} + \frac{1}{\sigma}\operatorname{sign}\left(A_{i,j,i}\right)\left(\operatorname{proj}_{\|\cdot\|_1 \leq 1}\left(\sigma|A_{i,j,:}|\right)\right)_{i,j,k} + \frac{1}{\sigma}\operatorname{sign}\left(A_{i,j,:}|\right)\left(\operatorname{proj}_{\|\cdot\|_1 \leq 1}\left(\sigma|A_{i,j,:}|\right)\right)_{i,j,k} + \frac{1}{\sigma}\operatorname{sign}\left(A_{i,j,:}|\right)\left(\operatorname{proj}_{\|\cdot\|_1 \leq 1}\left(\sigma|A_{i,j,:}|\right)\right)_{i,j,k} + \frac{1}{\sigma}\operatorname{sign}\left(A_{i,j,:}|\right)\right)_{i,j,k} + \frac{1}{\sigma}\operatorname{sign}\left(A_{i,j,:}|\right)\right)_{i,j,k} + \frac{1}{\sigma}\operatorname{sign}\left(A_{i,j,:}|\right)_{i,j,k} + \frac{1}{\sigma}\operatorname{$$

and similar for $\ell^{\infty,\infty,1}$ -norm.

Proximal Resolution of the Minimization Problem

• $\ell^{\infty,2,1}$ -norm:

$$\left(\operatorname{prox}_{\frac{1}{\sigma}\|\cdot\|_{\infty,2,1}}(A)\right)_{i,j,k} = A_{i,j,k} - \frac{1}{\sigma}\operatorname{sign}\left(A_{i,j,k}\right)\left(\operatorname{proj}_{\|\cdot\|_{1,2} \le 1}\left(\sigma|A_{i,:,:}|\right)\right)_{i,j,k}$$

• $\ell^{2,\infty,1}-$ norm is computed using the following result:

Theorem

Let $f: \mathbb{R}^{n \times m} \to \mathbb{R}^n$ be $f_i(u) := \sqrt{\sum_{j=1}^m u_{i,j}^2} = ||u_{i,:}||_2$, and let $g: \mathbb{R}^n \to \mathbb{R}$ be a proper convex function being nondecreasing in each argument. Then

$$\left(\mathsf{prox}_{\tau(g\circ f)}(u)\right)_{i,j} = \frac{u_{i,j}}{\|u_{i,:}\|_2} \max\left(\|u_{i,:}\|_2 - \tau v_i, 0\right),$$

where the v_i 's are the components of the vector $v \in \mathbb{R}^n$ that solves

$$v = \arg\min_{w \in \mathbb{R}^n} \frac{1}{2} \left\| w - \frac{1}{\tau} f(u) \right\|^2 + \frac{1}{\tau} g^*(w).$$

Proximal Resolution of the Minimization Problem

• $\ell^{\infty,2,1}$ -norm:

$$\left(\operatorname{prox}_{\frac{1}{\sigma}\|\cdot\|_{\infty,2,1}}(A)\right)_{i,j,k} = A_{i,j,k} - \frac{1}{\sigma}\operatorname{sign}\left(A_{i,j,k}\right)\left(\operatorname{proj}_{\|\cdot\|_{1,2} \le 1}\left(\sigma|A_{i,:,:}|\right)\right)_{i,j,k}$$

• $\ell^{2,\infty,1}$ -norm:

v

$$\begin{pmatrix} \operatorname{prox}_{\frac{1}{\sigma}\|\cdot\|_{2,\infty,1}}(A) \end{pmatrix}_{i,j,k} = \frac{A_{i,j,k}}{\|A_{i,j,:}\|_2} \max\left(\|A_{i,j,:}\|_2 - \frac{1}{\sigma}v_{i,j}, 0 \right),$$
where $v_{i,j} = \left(\operatorname{prox}_{\|\cdot\|_1 \le 1} \left(\sigma(\|A_{i,j,:}\|_2)_j \right) \right)_{i,j}$, and $\left(\|A_{i,j,:}\|_2 \right)_j$ denotes the vector obtained by stracking $\|A_{i,j,:}\|_2$ for all j .

▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 = • • • • • • • •

The image denoising minimization problem is

$$\min_{u \in \mathbb{R}^{N \times C}} \|Ku\| + \frac{\lambda}{2} \|u - f\|_F^2,$$

where $f \in \mathbb{R}^{N \times C}$ is the noisy image, $\lambda > 0$ the regularization parameter, and $\|\cdot\|$ denotes either an $\ell^{p,q,r}$ norm or a Schatten (S^p, ℓ^q) norm.

The proximity operator of $G(u) = \frac{\lambda}{2} \|u - f\|_F^2$ is

$$\operatorname{prox}_{\tau G}(u) = \arg\min_{v \in X} \left\{ \frac{1}{2} \|v - u\|_F^2 + \tau \frac{\lambda}{2} \|v - f\|_F^2 \right\} \, \Leftrightarrow \, \operatorname{prox}_{\tau G}(u) = \frac{u + \tau \lambda f}{1 + \tau \lambda} \, .$$

- A - E - N

-

Influence of the Regularization Parameter

Figure : Comparison of different matrix TV regularizations for color denoising using different λ values on data with Gaussian noise of standard deviation 25.

Figure : Noisy image with noise s.t. 25. PSNR = 20.74.

Figure : $\ell^{\infty,1,1}$ -regularization with $\lambda = 0.1$. PSNR = 24.92.

Figure : $\ell^{\infty,1,1}$ -regularization with $\lambda = 0.05$. PSNR = 27.62.

Figure : $\ell^{\infty,1,1}$ -regularization with optimal $\lambda = 0.04$. PSNR = 27.93.

Figure : $\ell^{\infty,1,1}$ -regularization with $\lambda = 0.03$. PSNR = 27.55.

Figure : $\ell^{\infty,1,1}$ -regularization with $\lambda = 0.01$. PSNR = 24.09.

Kodak Database

Kodak 1

Kodak 2

Kodak 3

Kodak 5

Kodak 6

Kodak 7

Kodak 8

Kodak 9

Kodak 10

Kodak 11

Kodak 12

Kodak	Noisy	$\ell^{1,1,1}$	$\ell^{2,1,1}$	$\ell^{2,2,1}$	$\ell^{\infty,1,1}$
1	26.15	31.01	31.14	31.07	31.20
2	26.14	31.23	31.36	31.21	31.44
3	26.17	31.78	31.88	31.76	31.99
4	26.08	34.38	35.06	34.66	35.03
5	26.10	35.02	35.69	35.35	35.73
6	26.11	29.28	29.37	29.30	29.60
7	26.08	31.64	31.70	31.58	31.77
8	26.31	33.88	34.24	34.02	34.29
9	26.98	34.40	34.74	34.67	34.78
10	26.06	32.21	32.50	32.36	32.61
11	26.06	32.31	32.39	32.27	32.45
12	26.09	35.17	35.93	35.33	35.94
Avg.	26.19	32.69	33.00	32.80	33.07

Nonlocal Color TV Denoising

Table : For each matrix TV method, the optimal λ and h in terms of PSNR were computed on the first Kodak image and then used on the others. The input noise s.d. was 12.75.

イロト イ押ト イヨト イヨト

3

Figure : Clean image.

Figure : Noisy image with noise s.d. 12.75. PSNR = 26.09.

Figure : $\ell^{1,1,1}$ -NLTV regularization. PSNR = 35.17,

Figure : $\ell^{2,1,1}$ -NLTV regularization. PSNR = 35.93,

Figure : $\ell^{2,2,1}$ -NLTV regularization. PSNR = 35.33.

Figure : $\ell^{\infty,1,1}$ -NLTV regularization. PSNR = 35.94.

Figure : Clean image.

Figure : Noisy image with noise s.d. 12.75. PSNR = 26.10.

Figure : $\ell^{1,1,1}$ -TV regularization. PSNR = 33.60,

Figure : $\ell^{1,1,1}$ -NLTV regularization. PSNR = 35.41,

Figure : $\ell^{\infty,1,1}$ -TV regularization. PSNR = 34.88.

Figure : $\ell^{\infty,1,1}$ -NLTV regularization. PSNR = 35.65.

Local Color TV Denoising

	Noisy	$\ell^{1,1,1}$	$\ell^{2,1,1}$	$\ell^{2,2,1}$	$\ell^{\infty,1,1}$	$\ell^{\infty,2,1}$	$\ell^{2,\infty,1}$	(S^1, ℓ^1)	(S^{∞}, ℓ^1)
1	24.78	28.14	29.07	28.51	29.90	29.19	29.07	29.20	27.96
2	24.76	28.54	29.48	29.22	30.18	29.87	29.66	29.83	28.62
3	24.80	29.20	30.15	29.81	30.85	30.51	30.25	30.33	29.24
4	24.68	30.92	32.22	31.80	32.73	32.71	32.13	32.32	31.01
5	24.71	31.50	32.75	32.41	33.13	33.30	32.64	32.81	31.65
6	24.72	27.36	28.19	27.98	29.01	28.64	28.52	28.59	27.47
7	24.71	29.46	30.39	30.12	30.86	30.71	30.35	30.57	29.53
8	24.96	31.08	32.10	31.84	32.41	32.40	32.02	32.20	31.22
9	25.68	30.92	31.74	31.54	32.10	32.00	31.78	31.85	31.11
10	24.66	29.75	30.81	30.49	31.48	31.29	30.94	31.05	29.84
11	24.66	30.14	31.10	30.84	31.49	31.46	31.07	31.22	30.25
12	24.71	31.85	33.15	32.84	33.45	33.69	33.03	33.25	32.05
	24.82	29.91	30.93	30.62	31.47	31.31	30.96	31.10	30.00

Table : For each matrix TV method, the optimal λ in terms of PSNR was computed on the first Kodak image and then used on the others. The input noise s.d. was 15.

< 🗇 🕨

★ E ► ★ E ►

3

Figure : Clean image.

Figure : Noise image with noise s.d. 15. PSNR = 24.78

Figure : $\ell^{1,1,1}$ -TV regularization. PSNR = 28.14.

Figure : $\ell^{2,1,1}$ -TV regularization. PSNR = 29.07.

Figure : $\ell^{2,2,1}$ -TV regularization. PSNR = 28.51.

Figure : $\ell^{\infty,1,1}$ -TV regularization. PSNR = 29.90.

Figure : $\ell^{\infty,2,1}$ -TV regularization. PSNR = 29.19.

Figure : $\ell^{2,\infty,1}$ -TV regularization. PSNR = 29.07.

Figure : (S^1, ℓ^1) -TV regularization. PSNR = 29.20.

Figure : (S^{∞}, ℓ^1) -TV regularization. PSNR = 27.96.

- We proposed a novel framework that unifies vectorial TV regularizations.
- The gradient of a color image was interpreted as a 3D tensor using pixels, (local or nonlocal) derivatives, and color channels.
- We considered several $\ell^{p,q,r}$ and (S^p, ℓ^q) matrix norms.
- Based on our experiments, we exhibited the superiority of using ℓ^{∞} inter-channel coupling for a stronger suppression of color artifacts in natural images.
- Future work will mainly concentrate on:
 - development of more mixed matrix norms for TV and NLTV regularizations;
 - study of permutations in the dimensions of the 3D tensor;
 - application of color transformations;
 - mathematical properties of mixed matrix norms;
 - application to other image restoration problems.

References

- J. Duran, M. Moeller, C. Sbert, D. Cremers, *Mixed Matrix Norms for Vector Valued Total Variation Regularization*, preprint, 2015.
- J. Duran, M. Moeller, C. Sbert, D. Cremers, *Color TV Denoising Using Mixed Matrix Norms*. Image Process. On Line, preprint, 2015.

Acknowledgements

J.D. and C.S. were supported by the Ministerio de Ciencia e Innovación under grant TIN2011-27539.

M.M. and D.C. were supported by ERC starting grant "Convex Vision".

J.D. acknowledges the fellowship of the Conselleria d'Educació, Cultura i Universitats of the Govern de les Illes Balears for the realization of his Ph.D. thesis, which has been selected under an operational program co-financed by the European Social Fund.

