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Ill-Posed Inverse Problems in Image Processing

Ill-Posed Inverse Problems in Image Processing

The classical inverse problem in imaging writes as f = Au + η.

Most of them are (highly) ill-posed.

Regularization methods handles ill-posedness by introducing prior knowledge on u,
usually assuming smooth solutions.

In the variational framework the regularized solution is computed as

û = arg min
u

R(u) + λG(u; f ).
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û = arg min
u

R(u) + λG(u; f ).

Collaborative Regularization for Color Imaging Problems J. Duran 2 / 27



Ill-Posed Inverse Problems in Image Processing

Ill-Posed Inverse Problems in Image Processing

The classical inverse problem in imaging writes as f = Au + η.

Most of them are (highly) ill-posed.

u A−1(f − η)

Regularization methods handles ill-posedness by introducing prior knowledge on u,
usually assuming smooth solutions.

In the variational framework the regularized solution is computed as
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Regularization Methods Total Variation

Regularization Methods
Total Variation

Consider the inverse problem

min
u∈BV(Ω,IR)

R(u) +
λ

2
‖Au − f ‖2

2 ,

with Ω ⊂ IRM , f ∈ L2 (Ω, IR) and a linear operator A : L2(Ω)→ L2(Ω).

A popular regularizer is the total variation [Rudin, Osher, Fatemi ’92]:

R(u) = TV(u) =

∫
Ω

‖∇u(x)‖2 dx︸ ︷︷ ︸
u∈C1(Ω,IR)

= sup
ξ∈Ξ

{∫
Ω

u div ξ dx

}
︸ ︷︷ ︸

u∈L1
loc

(Ω,IR)

,

where Ξ =
{
ξ ∈ C 1

c (Ω, IRM) : ‖ξ(x)‖2 ≤ 1, ∀x ∈ Ω
}

.

TV regularizes the image without smoothing the boundaries of the objects, but fails
to recover fine structures and texture.
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Regularization Methods Nonlocal Total Variation

Regularization Methods
Nonlocal Total Variation

Nonlocal means denoising algorithm [Buades, Coll, Morel ’05]:

NL[u](x) =
1∫

Ω
ωf (x , y) dy

∫
Ω

ωf (x , y)u(y) dy

ωf (x , y) = exp

(
−‖f (Px), f (Py )‖

h2

)

Natural images are self-similar!

Neighborhood filters as nonlocal regularization [Gilboa, Osher ’08]:

∇ωu(x , y) = (u(y)− u(x))
√
ωf (x , y) → R(u) =

∫
Ω

∫
Ω

|∇ωu(x , y)|2 dy dx .

The nonlocal total variation is defined as

R(u) = NLTV(u) =

∫
Ω

‖∇ωu(x , ·)‖2 dx = sup
ξ∈Ξ

{∫
Ω

u divω ξ dx

}
,

where Ξ =
{
ξ ∈ C 1

c (Ω× Ω, IRM) : ‖ξ(x , ·)‖2 ≤ 1, ∀x ∈ Ω
}

.

How can we generalize TV and NLTV to color images?

Collaborative Regularization for Color Imaging Problems J. Duran 4 / 27



Regularization Methods Nonlocal Total Variation

Regularization Methods
Nonlocal Total Variation

Nonlocal means denoising algorithm [Buades, Coll, Morel ’05]:

NL[u](x) =
1∫

Ω
ωf (x , y) dy

∫
Ω

ωf (x , y)u(y) dy

ωf (x , y) = exp

(
−‖f (Px), f (Py )‖

h2

)
Natural images are self-similar!

Neighborhood filters as nonlocal regularization [Gilboa, Osher ’08]:

∇ωu(x , y) = (u(y)− u(x))
√
ωf (x , y) → R(u) =

∫
Ω

∫
Ω

|∇ωu(x , y)|2 dy dx .

The nonlocal total variation is defined as

R(u) = NLTV(u) =

∫
Ω

‖∇ωu(x , ·)‖2 dx = sup
ξ∈Ξ

{∫
Ω

u divω ξ dx

}
,

where Ξ =
{
ξ ∈ C 1

c (Ω× Ω, IRM) : ‖ξ(x , ·)‖2 ≤ 1, ∀x ∈ Ω
}

.

How can we generalize TV and NLTV to color images?

Collaborative Regularization for Color Imaging Problems J. Duran 4 / 27



Regularization Methods Nonlocal Total Variation

Regularization Methods
Nonlocal Total Variation

Nonlocal means denoising algorithm [Buades, Coll, Morel ’05]:

NL[u](x) =
1∫

Ω
ωf (x , y) dy

∫
Ω

ωf (x , y)u(y) dy

ωf (x , y) = exp

(
−‖f (Px), f (Py )‖

h2

)
Natural images are self-similar!

Neighborhood filters as nonlocal regularization [Gilboa, Osher ’08]:

∇ωu(x , y) = (u(y)− u(x))
√
ωf (x , y) → R(u) =

∫
Ω

∫
Ω

|∇ωu(x , y)|2 dy dx .

The nonlocal total variation is defined as

R(u) = NLTV(u) =

∫
Ω

‖∇ωu(x , ·)‖2 dx = sup
ξ∈Ξ

{∫
Ω

u divω ξ dx

}
,

where Ξ =
{
ξ ∈ C 1

c (Ω× Ω, IRM) : ‖ξ(x , ·)‖2 ≤ 1, ∀x ∈ Ω
}

.

How can we generalize TV and NLTV to color images?

Collaborative Regularization for Color Imaging Problems J. Duran 4 / 27



Regularization Methods Nonlocal Total Variation

Regularization Methods
Nonlocal Total Variation

Nonlocal means denoising algorithm [Buades, Coll, Morel ’05]:

NL[u](x) =
1∫

Ω
ωf (x , y) dy

∫
Ω

ωf (x , y)u(y) dy

ωf (x , y) = exp

(
−‖f (Px), f (Py )‖

h2

)
Natural images are self-similar!

Neighborhood filters as nonlocal regularization [Gilboa, Osher ’08]:

∇ωu(x , y) = (u(y)− u(x))
√
ωf (x , y) → R(u) =

∫
Ω

∫
Ω

|∇ωu(x , y)|2 dy dx .

The nonlocal total variation is defined as

R(u) = NLTV(u) =

∫
Ω

‖∇ωu(x , ·)‖2 dx = sup
ξ∈Ξ

{∫
Ω

u divω ξ dx

}
,

where Ξ =
{
ξ ∈ C 1

c (Ω× Ω, IRM) : ‖ξ(x , ·)‖2 ≤ 1, ∀x ∈ Ω
}

.

How can we generalize TV and NLTV to color images?

Collaborative Regularization for Color Imaging Problems J. Duran 4 / 27



Regularization Methods Nonlocal Total Variation

Regularization Methods
Nonlocal Total Variation

Nonlocal means denoising algorithm [Buades, Coll, Morel ’05]:

NL[u](x) =
1∫

Ω
ωf (x , y) dy

∫
Ω

ωf (x , y)u(y) dy

ωf (x , y) = exp

(
−‖f (Px), f (Py )‖

h2

)
Natural images are self-similar!

Neighborhood filters as nonlocal regularization [Gilboa, Osher ’08]:

∇ωu(x , y) = (u(y)− u(x))
√
ωf (x , y) → R(u) =

∫
Ω

∫
Ω

|∇ωu(x , y)|2 dy dx .

The nonlocal total variation is defined as

R(u) = NLTV(u) =

∫
Ω

‖∇ωu(x , ·)‖2 dx = sup
ξ∈Ξ

{∫
Ω

u divω ξ dx

}
,

where Ξ =
{
ξ ∈ C 1

c (Ω× Ω, IRM) : ‖ξ(x , ·)‖2 ≤ 1, ∀x ∈ Ω
}

.

How can we generalize TV and NLTV to color images?
Collaborative Regularization for Color Imaging Problems J. Duran 4 / 27



Vectorial Total Variation Classical approaches

Vectorial Total Variation
Classical approaches

Consider a vector-valued image u : Ω→ IRc with C spectral channels.

Channel-wise summation [Blomgren, Chan ’98]:

VTV(u) =
C∑

k=1

TV(uk) = sup
ξ∈Ξ

{
C∑

k=1

∫
Ω

uk div ξk dx

}
,

where Ξ =
{
ξ ∈ C 1

c (Ω, IRM × · · · × IRM) : ‖ξk(x)‖ ≤ 1, ∀x ∈ Ω, ∀k = 1, . . . ,C
}

.

Global channel coupling [Sapiro, Ringach ’96]:

VTV(u) =

∫
Ω

‖∇u‖F dx = sup
ξ∈Ξ

{
C∑

k=1

∫
Ω

uk div ξk dx

}
,

where Ξ =
{
ξ ∈ C 1

c (Ω, IRM·C ) : ‖ξ(x)‖ ≤ 1, ∀x ∈ Ω
}

.

Spectral norm coupling [Goldluecke, Strekalovskiy, Cremers ’12]:

VTV(u) =

∫
Ω

‖∇u‖σ1 dx = sup
(ξ,η)∈Ξ

{
C∑

k=1

∫
Ω

uk div (ηkξ) dx

}
,

where Ξ =
{
ξ ∈ C 1

c (Ω, IRM),η ∈ C 1
c (Ω, IRC ) : ‖ξ(x)‖ ≤ 1, ‖η(x)‖ ≤ 1, ∀x ∈ Ω

}
.
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Vectorial Total Variation Classical approaches

∫
Ω

‖∇u‖F dx

∫
Ω

‖∇u‖σ1 dx

Channel coupling Channel coupling

Different edge direction Common edge direction

Image from [Goldluecke, Strekalovskiy, Cremers ’12]

Collaborative Regularization for Color Imaging Problems J. Duran 6 / 27



Vectorial Total Variation Which is the best VTV for color images?

Vectorial Total Variation
Which is the best VTV for color images?

Vectorial Total Variation


coupling spatial derivatives

{
isotropic diffusion

anisotropic diffusion

coupling color channels

{
`p − type coupling

Spectral coupling
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Collaborative Total Variation for Multi-Channel Images Proposed framework

Collaborative Total Variation for Multi-Channel Images
Proposed framework

Represent an image u with N pixels and C spectral channels by the matrix

u = (u1, . . . , uC ) ∈ IRN×C s.t. uk ∈ IRN , ∀k ∈ {1, . . . ,C}.

The Jacobi matrix at each pixel defines a 3D tensor given by

Du ≡ (Du)i,j,k ∈ IRN×M×C ,

with M directional derivatives.

For local operators Du is of size N × 2× C , while for nonlocal operators is of size
N × Nω × C with Nω � N since few nonzero weights are considered.
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Collaborative Total Variation for Multi-Channel Images Collaborative sparsity enforcing norms

Collaborative Total Variation for Multi-Channel Images
Collaborative sparsity enforcing norms

Regularize Du by penalizing each dimension with a different norm.

Definition

Let ‖ · ‖a : IRN → IR be any vector norm and ‖ · ‖~b : IRM×C → IR any matrix norm. Then,
the collaborative norm of A ∈ IRN×M×C is defined as

‖A‖~b,a = ‖v‖a, with vi = ‖Ai,:,;‖~b, ∀i ∈ {1, . . . ,N},

where Ai,:,: is the submatrix obtained by stacking the second and third dimensions of A
at ith position.

Example (`p,q,r norms)

Let A ∈ IRN×M×C and consider ‖ · ‖~b = `p,q and ‖ · ‖a = `r . Then, the `p,q,r norm is

‖A‖p,q,r =

 N∑
i=1

 M∑
j=1

(
C∑

k=1

|Ai,j,k |p
)q/p

r/q


1/r

.
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Collaborative Total Variation for Multi-Channel Images Collaborative sparsity enforcing norms

Example ((Sp, `q) norm)

Let A ∈ IRN×M×C and consider ‖ · ‖~b = Sp and ‖ · ‖a = `q. Then the (Sp, `q) norm is

(Sp, `q)(A) =

 N∑
i=1

∥∥∥∥∥∥∥∥


Ai,1,1 · · · Ai,1,C

...
. . .

...

Ai,M,1 · · · Ai,M,C


∥∥∥∥∥∥∥∥
q

Sp


1/q

.

Schatten p−norms:

Fix a pixel location and consider the submatrix obtained by looking at the
channel and derivative dimensions.

Compute SVD and penalize the singular values with an `p−norm:

- p = 1 → nuclear norm, a convex relaxation of rank minimization,
- p = 2 → Frobenius norm,
- p =∞ → penalizing the largest singular value.

CTV norms are non invariant to permutations of the dimensions:

`p,q,r (col , der , pix) and (Sp(col , der), `q(pix)) .
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Collaborative Total Variation for Multi-Channel Images
A unified framework for VTV

Continuous Formulation Our Framework∫
Ω

C∑
k=1

√
(∂x1

uk (x))2 + (∂x2
uk (x))2dx `2,1,1(der , col, pix)

∫
Ω

C∑
k=1

(
|∂x1

uk (x)| + |∂x2
uk (x)|

)
dx `1,1,1(der , col, pix)√√√√ C∑

k=1

(∫
Ω

√
(∂x1

uk (x))2 + (∂x2
uk (x))2dx

)2

`2,1,2(der , pix, col)√√√√ C∑
k=1

(∫
Ω

(
|∂x1

uk (x)| + |∂x2
uk (x)|

)
dx

)2

`1,1,2(der , pix, col)

∫
Ω

√√√√ C∑
k=1

(
∂x1

uk (x)
)2 +

C∑
k=1

(
∂x2

uk (x)
)2dx `2,2,1(col, der , pix)

∫
Ω

√√√√ C∑
k=1

(
|∂x1

uk (x)| + |∂x2
uk (x)|
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∫
Ω


√√√√ C∑

k=1

(
∂x1

uk (x)
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√√√√ C∑
k=1

(
∂x2

uk (x)
)2

 dx `2,1,1(col, der , pix)∫
Ω

(
max

1≤k≤C
|∂x1

uk (x)| + max
1≤k≤C

|∂x2
uk (x)|

)
dx `∞,1,1(col, der , pix)
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`2 coupling `∞ coupling
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Which is the Best Channel Coupling? Singular vector analysis

Which is the Best Channel Coupling?
Singular vector analysis

Definition

Let F be a convex regularization s.t. ∂F (u) 6= ∅ at any u ∈ domF . Then, every function
uλ s.t. ‖uλ‖ = 1 and λuλ ∈ ∂F (uλ) is called a singular vector of F with singular value λ.

A signal can be restored well if it is a singular vector of F [Benning, Burger ’13].

Singular vectors of CTV:

u ∈ ∂‖Du‖~b,a ⇔ u = D>z, with z ∈ ∂Du

(
‖Du‖~b,a

)
.

The functions whose divergence generates singular vectors reduce to

z1
k (x1, x2) = c1

k l
1
k (x1) and z2

k (x1, x2) = c2
k l

2
k (x2),

where c rk ∈ IR, |l rk(x)| ≤ 1, l rk piecewise linear and linearity changes iff |l rk(x)| = 1.
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Which is the Best Channel Coupling? Singular vector analysis

CTV Singular Vectors Properties

`1,1,1 uk (x1, x2) = −c1
kD1l

1
k (x1)− c2

kD2l
2
k (x2) l rk depend on k and c rk ∈ {0,±1}

`2,1,1 uk (x1, x2) = −c1
kD1l

1(x1)− c2
kD2l

2(x2) l r do not depend on k and ‖c r‖2 = 1

`∞,1,1 uk (x1, x2) = −c1
kD1l

1(x1)− c2
kD2l

2(x2) l r do not depend on k and c rk ∈ {0,±1}

`1,1,1 `2,1,1 `∞,1,1

The `∞ norm introduces the strongest channel coupling!
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Primal-Dual Minimization

Primal-Dual Minimization

Primal formulation:

min
u∈IRN×C

F (u) + G (u) = ‖Du‖~b,a + G (u) .

Since F is closed and l.s.c., then

F (Du) = F ∗∗(Du) = sup
p∈IRN×M×C

〈Du, p〉 − F ∗ (p) .

If F = ‖ · ‖, then its Legendre-Fenchel transform is

F ∗ (p) =

{
0 if ‖p‖∗ ≤ 1

+∞ otherwise

}
= X‖·‖∗≤1 (p) .

Theorem

Let ‖ · ‖~b∗ and ‖ · ‖a∗ be the dual norms to ‖ · ‖~b and ‖ · ‖a, respectively. Consider
A ∈ IRN×M×C and define v ∈ IRN such that vi = ‖Ai,:,:‖~b∗ for each i ∈ {1, . . . ,N}. If
‖v‖a∗ only depends on the absolute values of v ′i s, then the dual norm to ‖ · ‖~b,a is

‖A‖~b∗,a∗ = ‖v‖a∗ , with vi = ‖Ai,:,;‖~b∗ , ∀i ∈ {1, . . . ,N}.
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Primal-Dual Minimization

Saddle-point formulation:

min
u∈IRN×C

max
p∈IRN×M×C

〈Du, p〉 − F ∗ (p) + G (u) ,

with optimality conditions

0 ∈ ∂G (û) + D>p̂ and 0 ∈ ∂F ∗ (p̂)− Dû.

Primal-Dual algorithm [Chambolle, Pock ’11]:

un+1 = proxτnG
(
un − τnD>pn

)
← Gradient descent step in u

ūn+1 = un+1 +
(
un+1 − un

)
, ← Over-relaxation step in u

pn+1 = proxσnF∗
(
pn + σnDūn+1

)
← Gradient ascent step in p

where τn, σn > 0 are adaptive step-size parameters and

proxαf (x) = arg min
y

{
1

2α
‖y − x‖2

2 + f (y)

}
.

The proximity operator of F ∗ = X‖·‖~b∗,a∗≤1 is

proxσF∗ (p) = proj‖·‖~b∗,a∗≤1(p).
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Experimental Results Image denoising

Experimental Results
Image denoising

Noisy (σ = 30) `1,1,1(col , der , pix)
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Experimental Results Image denoising

Behaviour of CTV methods w.r.t. changing regularization parameter
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Experimental Results Image denoising

Image denoising on Kodak dataset

Noisy `1,1,1 `2,1,1 `2,2,1 `∞,1,1 `∞,2,1 `∞,∞,1 `2,∞,1 S1, `1 S∞, `1

1 24.78 28.14 29.07 28.51 29.90 29.19 28.60 29.07 29.20 27.96
2 24.76 28.54 29.48 29.22 30.18 29.87 29.36 29.66 29.83 28.62
3 24.80 29.20 30.15 29.81 30.85 30.51 29.84 30.25 30.33 29.24
4 24.68 30.92 32.22 31.80 32.73 32.71 31.54 32.13 32.32 31.01
5 24.71 31.50 32.75 32.41 33.13 33.30 32.10 32.64 32.81 31.65
6 24.72 27.36 28.19 27.98 29.01 28.64 28.29 28.52 28.59 27.47
7 24.71 29.46 30.39 30.12 30.86 30.71 29.99 30.35 30.57 29.53
8 24.96 31.08 32.10 31.84 32.41 32.40 31.62 32.02 32.20 31.22
9 25.68 30.92 31.74 31.54 32.10 32.00 31.49 31.78 31.85 31.11

10 24.66 29.75 30.81 30.49 31.48 31.29 30.52 30.94 31.05 29.84
11 24.66 30.14 31.10 30.84 31.49 31.46 30.68 31.07 31.22 30.25
12 24.71 31.85 33.15 32.84 33.45 33.69 32.47 33.03 33.25 32.05

24.82 29.91 30.93 30.62 31.47 31.31 30.54 30.96 31.10 30.00
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Experimental Results Image denoising

Image denoising on McMaster dataset

Noisy `1,1,1 `2,1,1 `2,2,1 `∞,1,1 `∞,2,1 `∞,∞,1 `2,∞,1 S1, `1 S∞, `1

1 25.32 29.29 29.83 29.64 29.74 29.52 28.97 29.25 29.98 29.16
2 24.90 27.80 28.41 28.26 28.43 28.32 27.80 28.02 28.60 27.75
3 25.46 30.44 30.96 30.84 30.78 30.66 30.16 30.39 31.17 30.33
4 25.14 29.26 29.91 29.75 29.95 29.82 29.30 29.54 30.13 29.22
5 25.62 31.11 31.46 31.40 30.97 30.84 30.33 30.55 31.64 30.89
6 25.01 29.83 30.49 30.32 30.34 30.13 29.55 29.84 30.74 29.68
7 25.21 30.96 31.63 31.48 31.41 31.21 30.66 30.98 31.80 30.87
8 25.34 31.98 32.72 32.60 32.50 32.30 31.78 32.15 32.88 31.99
9 25.21 32.54 33.36 33.32 33.08 32.93 32.50 32.85 33.53 32.70

10 24.69 32.26 33.06 33.02 32.70 32.54 32.10 32.49 33.20 32.37
11 25.55 30.21 30.85 30.75 30.87 30.73 30.35 30.59 30.98 30.29
12 25.21 30.58 31.18 30.99 31.11 30.87 30.36 30.69 31.30 30.50

25.22 30.52 31.16 31.03 30.99 30.82 30.32 30.61 31.33 30.48
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Experimental Results Image denoising: local vs nonlocal CTV

Experimental Results
Image denoising: local vs nonlocal CTV

Noisy `1,1,1 − TV, PSNR = 33.60
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Image denoising: local vs nonlocal CTV

Noisy `1,1,1 − NLTV, PSNR = 35.41
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Image denoising: local vs nonlocal CTV

Noisy `∞,1,1 − TV, PSNR = 34.88
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Experimental Results Image denoising: local vs nonlocal CTV

Experimental Results
Image denoising: local vs nonlocal CTV

Noisy `∞,1,1 − NLTV, PSNR = 35.65
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Experimental Results Image inpainting

Experimental Results
Image inpainting

Noisy (σ = 30) `1,1,1(col , der , pix)
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Experimental Results Image inpainting

Experimental Results
Image inpainting

Noisy (σ = 30) `2,∞,1(der , col , pix)
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Noisy (σ = 30) `2,1,1(col , der , pix)
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Experimental Results On Line Demo
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Conclusions

Conclusions

We introduced a unified framework for VTV based on collaborative enforcing norms.

Depending on the inter-channel correlation, different CTV regularizations are suited.

`∞,1,1 and
(
S1, `1

)
best exploit inter-channel correlations.

We introduced respective Nonlocal CTV regularizations.

We proposed the primal-dual algorithm to solve the minimization problem.
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Proximity operator of `p,q,r norms

`1,1,1−norm: (
prox 1

σ
‖·‖1,1,1

(A)
)
i,j,k

= max

(
|Ai,j,k | −

1

σ
, 0

)
sign

(
Ai,j,k

)
.

`2,1,1−norm: (
prox 1

σ
‖·‖2,1,1

(A)
)
i,j,k

= max

(
‖Ai,j,:‖2 −

1

σ
, 0

)
Ai,j,k

‖Ai,j,:‖2
.

`2,2,1−norm:(
prox 1

σ
‖·‖2,2,1

(A)
)
i,j,k

= max

(
‖Ai,:,:‖2,2 −

1

σ
, 0

)
Ai,j,k

‖Ai,:,:‖2,2
.

`∞,1,1−norm decouples at each j and k so we are left with an `∞ problem computed
by means of the projection onto unit `1 dual ball:(

prox 1
σ
‖·‖∞,1,1 (A)

)
i,j,k

= Ai,j,k −
1

σ
sign

(
Ai,j,k

) (
proj‖·‖1≤1 (σ|Ai,j,:|)

)
i,j,k

,

where Ai,j,: denotes the vector obtained by staking third dimension.
`∞,∞,1−norm:(

prox 1
σ
‖·‖∞,∞,1 (A)

)
i,j,k

= Ai,j,k −
1

σ
sign

(
Ai,j,k

) (
proj‖·‖1,1≤1 (σ|Ai,:,:|)

)
i,j,k

,

with Ai,:,: being the vector obtained by stacking second and third dimensions.

Collaborative Regularization for Color Imaging Problems J. Duran 2 / 7



`∞,2,1−norm:(
prox 1

σ
‖·‖∞,2,1 (A)

)
i,j,k

= Ai,j,k −
1

σ
sign

(
Ai,j,k

) (
proj‖·‖1,2≤1 (σ|Ai,:,:|)

)
i,j,k

,

where proj‖·‖1,2≤1 denotes the projection onto unit `1,2−norm ball.

`2,∞,1−norm:(
prox 1

σ
‖·‖2,∞,1

(A)
)
i,j,k

=
Ai,j,k

‖Ai,j,:‖2
max

(
‖Ai,j,:‖2 −

1

σ
vi,j , 0

)
,

where vi,j =
(

prox‖·‖1≤1

(
σ
(
‖Ai,j,:‖2

)
j

))
i,j

, and
(
‖Ai,j,:‖2

)
j

denotes the vector

obtained by stacking ‖Ai,j,:‖2 for all j .

Theorem

Let f : IRn×m → IRn be fi (u) :=
√∑m

j=1 u
2
i,j = ‖ui,:‖2, and let g : IRn → IR be proper

convex function being nondecreasing in each argument. Then(
proxτ(g◦f )(u)

)
i,j

=
ui,j
‖ui,:‖2

max
(
‖ui,:‖2 − τvi , 0

)
,

where the vi ’s are the components of the vector v ∈ IRn that solves

v = arg min
w∈IRn

1

2

∥∥∥∥w − 1

τ
f (u)

∥∥∥∥2

+
1

τ
g∗(w).

Collaborative Regularization for Color Imaging Problems J. Duran 3 / 7



Proximity operators of (Sp, `q) norms

If q = 1, the proximity operator decouples at each pixel:

Define M × C submatrix Bi := (Ai,j,k)j=1,...,M; k=1,...,C .

Let B = BT
i , we need to solve at each pixel

min
D∈IRM×C

1

2
‖D − B‖2

F +
1

σ
‖D‖Sp .

Computing SVD of B = UΣ0V
T and Σ = UTDV , the problem is equivalent to

min
D∈IRM×C

1

2
‖UTDV − Σ0‖2

F +
1

σ
‖UTDV ‖Sp ⇔ min

Σ∈IRr×r

1

2
‖Σ− Σ0‖2

F +
1

σ
‖Σ‖Sp .

For diagonal matrices Sp(Σ) = `p
(
diag(Σ)

)
, so that we finally solve

min
s∈IRr

1

2
‖s − s0‖2

2 +
1

σ
‖s‖p,

where s0 = diag(Σ0) and s = diag(Σ).

Only need to compute eigenvalues, Σ0, and eigenvectors, V , of BT
i Bi .
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Let Σ̂ s.t. diag(Σ̂) = arg mins
1
2
‖s − s0‖2

2 + 1
σ
‖s‖p

The proximity operator D̂ = arg minD
1
2
‖D − B‖F2 + 1

σ
‖D‖Sp is D̂ = UΣ̂V T .

Due to B = UΣ0V
T , communitation of diagonal matrices, and Σ̂Σ0Σ†0 = Σ̂ – since

Σ̂ has at most as many nonzero diagonal entries as Σ0 –, one has

BV = UΣ0 ⇒ BV Σ̂ = UΣ0Σ̂ = UΣ̂Σ0

⇒ BV Σ̂Σ†0 = UΣ̂ ⇒ BV Σ̂Σ†0V
T = UΣ̂V T = D̂,

where Σ†0 denotes the pseudo-inverse matrix of Σ0, i.e.

(
Σ†0
)
i,j

=


1

(Σ0)i,i
if i = j and (s0)i,i 6= 0,

0 otherwise.

Therefore, the proximity operator is

D̂ = BV Σ̂Σ†0V
T ,

where

- diag(Σ0) consists of the square root of the eigenvalues of BTB.
- col(V ) are the eigenvectors of BTB.
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Image Denoising

min
u∈IRN×C

‖Ku‖b,a +
λ

2
‖u − f ‖2

F ,

where f ∈ IRN×C is the noisy image, λ > 0 the regularization parameter, and ‖ · ‖b,a
denotes either an `p,q,r norm or a Schatten (Sp, `q) norm.

The proximity operator of G(u) = λ
2
‖u − f ‖2

F is

proxτG (u) = arg min
v∈X

{
1

2
‖v − u‖2

F + τ
λ

2
‖v − f ‖2

F

}
⇔ proxτG (u) =

u + τλf

1 + τλ
.

Therefore, the solution of un+1 = proxτnG
(
un − τnKT zn

)
is given by

un+1 =
un + τn

(
−KT zn + λf

)
1 + τnλ

,

where −KT = div is defined as 〈−div z , u〉X = 〈z ,Ku〉Y .
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Image Deconvolution

min
u∈IRN×C

‖Ku‖b,a +
λ

2
‖Au − f ‖2

F ,

with A being the linear operator modelling the convolution of u with a Gaussian kernel.s

The proximity operator of G(u) = λ
2
‖Au − f ‖2

F is

û = arg min
v∈X

{
1

2
‖v − u‖2

F + τ
λ

2
‖Av − f ‖2

F

}
⇔ û = (I + τλA∗A)

−1
(u + τλA∗f ) .

Computing (I + τλA∗A)−1 is huge time consuming in the spatial domain. On the
contrary, using FFT, the solution can be efficiently computed as

û = F−1

(
F(u) + τλF(A)F(f )

1 + τλF(A)2

)
.
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