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lll-Posed Inverse Problems in Image Processing
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@ The classical inverse problem in imaging writes as f = Au + 7.

Collaborative Regularization for Color Imaging Problems [NEIITET] 2/27



lll-Posed Inverse Problems in Image Processing

[lI-Posed Inverse Problems in Image Processing

@ The classical inverse problem in imaging writes as f = Au + 7.

@ Most of them are (highly) ill-posed.

Collaborative Regularization for Color Imaging Problems [NEIITET] 2/27




lll-Posed Inverse Problems in Image Processing

[lI-Posed Inverse Problems in Image Processing

@ The classical inverse problem in imaging writes as f = Au + 7.

@ Most of them are (highly) ill-posed.

u ATY(f —n)

Collaborative Regularization for Color Imaging Problems [NEIITET] 2/27



lll-Posed Inverse Problems in Image Processing

[lI-Posed Inverse Problems in Image Processing

@ The classical inverse problem in imaging writes as f = Au + 7.

@ Most of them are (highly) ill-posed.

u ATY(f —n)

@ Regularization methods handles ill-posedness by introducing prior knowledge on u,
usually assuming smooth solutions.

Collaborative Regularization for Color Imaging Problems [NEIITET] 2/27



lll-Posed Inverse Problems in Image Processing

[lI-Posed Inverse Problems in Image Processing

@ The classical inverse problem in imaging writes as f = Au + 7.

@ Most of them are (highly) ill-posed.

u ATY(f —n)

@ Regularization methods handles ill-posedness by introducing prior knowledge on u,
usually assuming smooth solutions.

@ In the variational framework the regularized solution is computed as

0 =argmin R(u) + AG(u; f).
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Regularization Methods

Total Variation

@ Consider the inverse problem

. A 2
et R(u) + 5 lAu — fl3,

with Q € RM, f € [?(Q, R) and a linear operator A : [3(Q) — L[*(Q).
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Regularization Methods

Total Variation

@ Consider the inverse problem

. A 2
et R(u) + 5 lAu — fl3,

with Q € RM, f € [?(Q, R) and a linear operator A : [3(Q) — L[*(Q).
@ A popular regularizer is the total variation [Rudin, Osher, Fatemi '92]:
R(u) =TV(u) = / (IVu(x)]|, dx = sup {/ udivg dx},

Q ge= Lo

ueC(Q,R) uell

loc
where = = {¢ € CH(Q,RY) : ||€(x)]l, <1, Vx € Q}.

(2R)
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@ Consider the inverse problem

. A 2
et R(u) + 5 lAu — fl3,

with Q € RM, f € [?(Q, R) and a linear operator A : [3(Q) — L[*(Q).
@ A popular regularizer is the total variation [Rudin, Osher, Fatemi '92]:
R(u) =TV(u) = / (IVu(x)]|, dx = sup {/ udivg dx},

Q ge= Lo

ueCH(Q,R) uell

loc
where = = {¢ € CH(Q,RY) : ||€(x)]l, <1, Vx € Q}.

(2R)

@ TV regularizes the image without smoothing the boundaries of the objects, but fails
to recover fine structures and texture.
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Regularization Methods

Nonlocal Total Variation

@ Nonlocal means denoising algorithm [Buades, Coll, Morel '05]:

1
NL[u](x) = W /Qo.)f(x7 y)u(y) dy
wf(X7}/) = exp (_W>
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@ Nonlocal means denoising algorithm [Buades, Coll, Morel '05]:

1
NL[u](x) = W /Qo.)f(x7 y)u(y) dy
wf(X7}/) = exp (_W>

Natural images are self-similar!

@ Neighborhood filters as nonlocal regularization [Gilboa, Osher '08]:

Vou(xy) = (u(y) — u(x)) Var(ay) — R(u) = / / IVou(x, y)|? dy dx.
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Regularization Methods

Nonlocal Total Variation

o Nonlocal means denoising algorithm [Buades, Coll, Morel '05]:

1
ML) = e / wr(x, y)uly) dy

wr(x,y) = exp (_W)

Natural images are self-similar!

@ Neighborhood filters as nonlocal regularization [Gilboa, Osher '08]:

Vou(xy) = (u(y) — u(x)) Var(ay) — R(u) = / / IVou(x, y)|? dy dx.

@ The nonlocal total variation is defined as
R(u) = NLTV(u) = / (IVwu(x,-)|l, dx = sup {/ u dive, £dx} ,
Q ee= LJa
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Regularization Methods

Nonlocal Total Variation

o Nonlocal means denoising algorithm [Buades, Coll, Morel '05]:

1
ML) = e / wr(x, y)uly) dy

wr(x,y) = exp (_W)

Natural images are self-similar!

@ Neighborhood filters as nonlocal regularization [Gilboa, Osher '08]:

Vou(xy) = (u(y) — u(x)) Var(ay) — R(u) = / / IVou(x, y)|? dy dx.

@ The nonlocal total variation is defined as
R(u) = NLTV(u) = / (IVwu(x,-)|l, dx = sup {/ udivy, £dx} ,
Q ¢ce= LJa
where = = {£ € CH(Q x Q, RY) : ||&(x, )], < 1,Vx € Q}.

How can we generalize TV and NLTV to color images?
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Vectorial Total Variation Classical approaches

Vectorial Total Variation
Classical approaches

Consider a vector-valued image u : Q — R with C spectral channels.
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Vectorial Total Variation
Classical approaches

Consider a vector-valued image u : Q — R with C spectral channels.

o Channel-wise summation [Blomgren, Chan '98]:

C C
VTV = TV = div€, dx
(@) = > TV(w) gp{zf £, }

where = = {£ € CHQLRY x - x RM) : [|€,(x)| <1,Vx€Q,Vk=1,...,C}.
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Vectorial Total Variation
Classical approaches

Consider a vector-valued image u : Q — R with C spectral channels.

o Channel-wise summation [Blomgren, Chan '98]:

C C
VTV(u) = > TV(w) = sup{Z/ uedive, dx},
k=1 €€ =1 /0
where = = {£ € CHQLRY x - x RM) : [|€,(x)| <1,Vx€Q,Vk=1,...,C}.

@ Global channel coupling [Sapiro, Ringach '96]:

c
VTV(u):/||Vu||Fdx:sup Z/ukdivﬁk dx v,
Q ge= |\ /a

where = = {¢ € C}(Q, RMC) ()| <1, ¥x € Q}.
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Vectorial Total Variation
Classical approaches

Consider a vector-valued image u : Q — R with C spectral channels.

@ Channel-wise summation [Blomgren, Chan '98]:

C C
VTV(u) = > TV(w) = sup{Z/ uedive, dx},
k=1 €€ =1 /0
where = = {£ € CHQLRY x - x RM) : [|€,(x)| <1,Vx€Q,Vk=1,...,C}.

@ Global channel coupling [Sapiro, Ringach '96]:

c
VTV(u) = / | Vul|r dx = sup {Z/ ucdive, dx}7
Q ge= |\ /a
where = = {¢ € C}(Q, RMC) ()| <1, ¥x € Q}.

@ Spectral norm coupling [Goldluecke, Strekalovskiy, Cremers '12]:

c
VTV(u):/HVuHU1 dx = sup Z/ukdiv(nkg) dx
Q ¢me= | /o

where = = {€ € CX(Q, RM),n € CH(Q, R) : [€(x)] < 1,[In(x)]| <1, ¥x € Q}.
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Vectorial Total Variation Classical approaches

/I\Vul\Fdx /uwnal dx
Q Q

Channel coupling Channel coupling

Different edge direction Common edge direction

Image from [Goldluecke, Strekalovskiy, Cremers '12]
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Vectorial Total Variation Which is the best VTV for color images?

Vectorial Total Variation
Which is the best VTV for color images?

isotropic diffusion

coupling spatial derivatives . o
. o anisotropic diffusion
Vectorial Total Variation )
. £P — type coupling
coupling color channels .
Spectral coupling
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Collaborative Total Variation for Multi-Channel Images Proposed framework

Collaborative Total Variation for Multi-Channel Images
Proposed framework

@ Represent an image u with N pixels and C spectral channels by the matrix
u=(u1,...,uc) € R"*“ st. u, e R" Vke{l,...,C}.
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Collaborative Total Variation for Multi-Channel Images
Proposed framework

@ Represent an image u with N pixels and C spectral channels by the matrix
u=(u1,...,uc) € R"*“ st. u, e R" Vke{l,...,C}.
@ The Jacobi matrix at each pixel defines a 3D tensor given by
Du = (Du), ; , € R""*€,

with M directional derivatives.
Pixel positions

Y

<
6@?@,

]

Differences between
pairs of pixels

<L
«<

p
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Collaborative Total Variation for Multi-Channel Images
Proposed framework

@ Represent an image u with N pixels and C spectral channels by the matrix
u=(u1,...,uc) € R"*“ st. u, e R" Vke{l,...,C}.
@ The Jacobi matrix at each pixel defines a 3D tensor given by
Du = (Du), ; , € R""*€,

with M directional derivatives.
Pixel positions

Y

<
6@?@,

]

Differences between
pairs of pixels

Y
'x
N

@ For local operators Du is of size N x 2 x C, while for nonlocal operators is of size
N x N, x C with N, < N since few nonzero weights are considered.
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Collaborative sparsity enforcing norms

@ Regularize Du by penalizing each dimension with a different norm.

Collaborative Regularization for Color Imaging Problems [NEIITET] 9 /27



Collaborative Total Variation for Multi-Channel Images Collaborative sparsity enforcing norms

Collaborative Total Variation for Multi-Channel Images
Collaborative sparsity enforcing norms

@ Regularize Du by penalizing each dimension with a different norm.

Definition

Let || - ||a : RY — R be any vector norm and || - ||z : RY*S — R any matrix norm. Then,

the collaborative norm of A € RV*M*XC is defined as

||AH572 =|v|la, with vi=||Ai.:llz Vie{l,...,N},

where A;. . is the submatrix obtained by stacking the second and third dimensions of A
at ith position.
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Collaborative Total Variation for Multi-Channel Images
Collaborative sparsity enforcing norms

@ Regularize Du by penalizing each dimension with a different norm.

Definition

Let || - ||a : RY — R be any vector norm and || - ||z : RY*S — R any matrix norm. Then,
the collaborative norm of A € RV*M*C is defined as

[All, = lIvilas  with vi = [|Ai]

B Vi e {1,...,/\/},
where A;. . is the submatrix obtained by stacking the second and third dimensions of A

at ith position.

Example (79" norms)

Let A€ RN*M*C and consider || - |; = ¢79 and || - || = £". Then, the (%" norm is

1/r
N M e qa/p r/q

Alp.ar = [ D2 D2 | D0 [Awal®

i=1 \ j=1 \k=1
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Collaborative Total Variation for Multi-Channel Images Collaborative sparsity enforcing norms

Example ((S”,£9) norm)

Let A€ RN*M*C and consider || - ||; = SP and || - ||a = £9. Then the (S”,£9) norm is

q\ 1/q
. A1 - Aiic

(.6 = [ 2

Aimi - Aiwmc o

@ Schatten p—norms:
e Fix a pixel location and consider the submatrix obtained by looking at the
channel and derivative dimensions.
o Compute SVD and penalize the singular values with an ¢’ —norm:
- p=1 — nuclear norm, a convex relaxation of rank minimization,
- p=2 — Frobenius norm,
- p =00 — penalizing the largest singular value.
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q\ 1/q
. A1 - Aiic

(.6 = [ 2

Aimi - Aiwmc o

@ Schatten p—norms:

e Fix a pixel location and consider the submatrix obtained by looking at the
channel and derivative dimensions.
o Compute SVD and penalize the singular values with an ¢’ —norm:
- p=1 — nuclear norm, a convex relaxation of rank minimization,
- p =2 — Frobenius norm,
- p =00 — penalizing the largest singular value.

@ CTV norms are non invariant to permutations of the dimensions:

P (col, der, pix) and (S”(col, der), £7(pix)) .
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Collaborative sparsity enforcing norms

Collaborative Total Variation for Multi-Channel Images

Example ((S”,£9) norm)
Let A€ RN*M*C and consider || - ||; = SP and || - ||a = £9. Then the (S”,£9) norm is

q\ 1/q
N

(S7 (A = | >

i=1
Aimi - Aiwmc o

A1 - Aiic

@ Schatten p—norms:
e Fix a pixel location and consider the submatrix obtained by looking at the

channel and derivative dimensions.
o Compute SVD and penalize the singular values with an ¢’ —norm:
- p=1 — nuclear norm, a convex relaxation of rank minimization,

- p=2 — Frobenius norm,
- p =00 — penalizing the largest singular value.

@ CTV norms are non invariant to permutations of the dimensions:
P (col, der, pix) and (S”(col, der), £7(pix)) .

@ Any transform along each of the dimensions, in particular, color space transforms,

can be applied before CTV.
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Collaborative Total Variation for Multi-Channel Images
A unified framework for VTV

l Continuous Formulation [ Our Framework ]
/ \/(axl uk(x))? + (Oxy uk(x))?dx 211 (der, col, pix)
Q=1
C
/ > (184 uk(x)] + 195 i (X)) 2511 (der, col, pix)
Q=1
c 2
> ( /Q @2 +(ax2uk(x))2dx) @A2(der, pix, col)
c 2
Z (/Q (18 i (x)| + |y uic(x \)dx) 2212 (der, pix, col)
k=1

c c
/ Z (Bxq ik x) + Z (D ik x)) 2221 (col, der, pix)
2\ k=1 k=1
c
/Q S (10 5 ()] + 182 i (x)]) e 022 (der, col, pix)
k=1
c c
/ Z (84 i x)) Z (8% uk(x))2 dx 211 (col, der, pix)
Q k=1 k=1
/Q (121,2( [0 uk (x)] + mkax |Ox, uk(x)|> €211 (col, der, pix)
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Collaborative Total Variation for Multi-Channel Images A unified framework for VTV

[ Continuous Formulation [ Our Framework ]
‘/Q \/( Tax. |8 uic (X)) + (121356 |81 uic(x)]) > dx 2222 (col, der, pix)
A 1£nka§xc \/(&q uk(x))2 + (0% uk(x))zdx £3°°Y(der, col, pix)
/Q max {lgnkasxc [Oxg uk(X)], 1g1ka§xc [Ox, uk(x)|} dx £5°:°°:Y(col, der, pix)
/Q (,/,\+(x) + \/A*(X)) dx (5%(col, der), £*(pix))
/ V() dx (5% (col, der), £1(pix))
Q
N C .
/Q <; \//Q (uk(y) — uk(x))? w(x, y) dy) dx Zi‘l’l(der, col, pix)
. C .
LL1(der. col, pix
/ (Z [ 10) = ut)lyfete ) dy> dx (51 (der, col pix)
c 2
; (/n \//n (uk(y) — uk(x))? w(x, y) dy dx) 2312 (der, pix, col)
c
/r-z /S; kz:; (uk(y) — uk(x))? w(x, y) dy dx 2211 (col, der, pix)
c
/Q ‘/Q ; (u(y) = uk(x))? w(x, y) dy dx 2221 (col, der, pix)
/anlgféc ((uk(y) — uk(x))zw(x,y)) dy dx 25211 (col, der, pix)
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Inter-channel correlation

£ coupling

22 coupling £>° coupling

Collaborative Regularization for Color Imaging Problems [EISITET] 13 /27



Which is the Best Channel Coupling? Inter-channel correlation

¢! coupling

22 coupling £°° coupling
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Which is the Best Channel C Inter-channel correlation

£ coupling

£2 coupling £>° coupling
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Which is the Best Channel Coupling?

Singular vector analysis

Definition

Let F be a convex regularization s.t. 9F(u) # 0 at any u € dom F. Then, every function
uy s.t. [Jux|| =1 and Auy € 9F (uy) is called a singular vector of F with singular value \.
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Singular vector analysis

Definition

Let F be a convex regularization s.t. 9F(u) # 0 at any u € dom F. Then, every function
uy s.t. [Jux|| =1 and Auy € 9F (uy) is called a singular vector of F with singular value \.

o A signal can be restored well if it is a singular vector of F [Benning, Burger '13].
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Which is the Best Channel Coupling?

Singular vector analysis

Definition

Let F be a convex regularization s.t. 9F(u) # 0 at any u € dom F. Then, every function
uy s.t. [Jux|| =1 and Auy € 9F (uy) is called a singular vector of F with singular value \.

o A signal can be restored well if it is a singular vector of F [Benning, Burger '13].
@ Singular vectors of CTV:

u€d|Dul;, & u= D'z, with z € 8Du(||Dqu’a).

The functions whose divergence generates singular vectors reduce to
1 11 2 2.2
zi(x1,x2) = cilk(x1) and zi(x1, %) = cili(x2),

where ¢; € R, |l[(x)| <1, I; piecewise linear and linearity changes iff |/{(x)| = 1.

N .
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Wi the Best Channel C ng’ Singular vector analysis

CTV Singular Vectors Properties

T Ui (31, %) = —eDili (x) — ciDalz (x0) I, depend on k and ¢, € {0,+1}
2t u(x1, %) = —c;Dilf(x1) — c; D2 (x2) I" do not depend on k and ||c"|[> =1
021y (xi, x0) = —ciDil*(x1) — ¢iD2/?(x2) | I” do not depend on k and ¢ € {0, +1}

=
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CTV Singular Vectors Properties

Al uk(x1, %) = —ci D1l (x1) — i Dalz (x2) I, depend on k and ¢, € {0,+1}
2t u(x1, %) = —c;Dilf(x1) — c; D2 (x2) I" do not depend on k and ||c"|[> =1
021y (xi, x0) = —ciDil*(x1) — ¢iD2/?(x2) | I” do not depend on k and ¢ € {0, +1}

Zoo,l,l

17 / 27



Primal-Dual Mini

Primal-Dual Minimization
@ Primal formulation:

min _ F(u)+ G (u) = ||Du|\513 + G (u).

ueRNxC
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Primal-Dual Mini

Primal-Dual Minimization

@ Primal formulation:
min F (u) + G (u) = ||Dul|z, + G (u).
ueRNxC ’

@ Since F is closed and l.s.c., then
F(Du) = F**(Du) = sup {(Du,p)— F*(p).

peRNxMxC
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Primal-Dual Minimization

Primal-Dual Minimization

@ Primal formulation:

min _ F(u)+ G (u) = ”DuHE,a + G (u).

ueRNXC
@ Since F is closed and l.s.c., then
F(Du) = F**(Du) = sup {(Du,p)— F*(p).

peRNxMxC

o If F = -||, then its Legendre-Fenchel transform is

F*(p) = { 0 iflel. <1 } = X j.<1(p)-

+00 otherwise
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Primal-Dual Minimization

Primal-Dual Minimization

@ Primal formulation:

min _ F(u)+ G (u) = ”DUHE,a + G (u).

ueRNxC

@ Since F is closed and l.s.c., then
F(Du) = F**(Du) = sup {(Du,p)— F*(p).

peRNxMxC

o If F = -||, then its Legendre-Fenchel transform is

F*(p) = { 0 ifllell. <1 } = X j.<1(p)-

+00 otherwise

Let || - ||z and || - ||+ be the dual norms to || - ||z and || - ||a, respectively. Consider
A € RV*M*C and define v € R" such that v; = ||A;,..||z. for each i € {1,...,N}. If
|Iv||a= only depends on the absolute values of v}'s, then the dual norm to || - ||z, is

IAlG o = lIvllax,  with vi=|Ai.llz, Vi€ {l,...,N}.
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Primal-Dual Minimization

@ Saddle-point formulation:

min max (Du,p) — F* (p) + G (u),

ucRNxC pERNXMXC
with optimality conditions

0€dG()+D'p and 0 F* (p) — Du.
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Primal-Dual Minimization

@ Saddle-point formulation:

min max (Du,p) — F* (p) + G (u),

ucRNxC pERNXMXC
with optimality conditions

0€dG()+D'p and 0 F* (p) — Du.

o Primal-Dual algorithm [Chambolle, Pock '11]:

u™" = prox, ¢ (u" — TnDTp") < Gradient descent step in u
"t =0 4 (u - "), + Over-relaxation step in u

p"! = prox, r. (p"+ 0,Dd""!) <  Gradient ascent step in p

where 7,,0, > 0 are adaptive step-size parameters and

. 1
proxaf(x) = argmin { 2 Hy - XH% + f(y)} .
y (0%
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Primal-Dual Minimization

@ Saddle-point formulation:

min max (Du,p) — F* (p) + G (u),

UGRNXCpERNXMXC
with optimality conditions
0€dG()+D'p and 0 F* (p) — Du.

o Primal-Dual algorithm [Chambolle, Pock '11]:

u™t = prox, ¢ (u" — TnDTp") < Gradient descent step in u

"t =0 4 (u - "), + Over-relaxation step in u

p"! = prox, r. (p"+ 0,Dd""!) <  Gradient ascent step in p

where 7,,0, > 0 are adaptive step-size parameters and
. 1 2
prox,¢(x) = arg min 2*“}’ —xl2+f(y) ¢
y «
@ The proximity operator of F* = X”AHE* <1is
ProX, e (P) = projj .. <i(p)-
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Experimental Results Image denoising

Behaviour of CTV methods w.r.t. changing regularization parameter

28
27t )?\
26| /%///\&\ \
25} / \ \ \
\ ~——
24 /// \ B =
3
UZ: 23+ // fL11 \\\§\\\
) ~
o 2.1 —
// e \Q\\\-ﬁ
22 £2.2.1 nsamm—
/ ['x‘.l.l
21 ['x‘.Z.l
20
{ 2.1
19 (s1eh
(s=.61)
T T
B0 002 004 006 008 01 012 014 016 018 02 022 024

Regularization parameter

Collaborative Regularization for Color Imaging Problems Duran 21 /27



Experimental Results Image denoising

Image denoising on Kodak dataset

Noisy | €11 5T 77T XTT [ 2T [ goosol | gl [ gl gt [ g% gt
24.78 | 28.14 | 29.07 | 28.51 29.90 29.19 28.60 29.07 29.20 27.96
24.76 | 28.54 | 29.48 | 29.22 30.18 29.87 29.36 29.66 29.83 28.62
24.80 | 29.20 | 30.15 | 29.81 30.85 30.51 29.84 30.25 30.33 29.24
24.68 | 30.92 | 32.22 | 31.80 32.73 32.71 31.54 32.13 32.32 31.01
24.71 | 31.50 | 32.75 | 32.41 33.13 33.30 32.10 32.64 32.81 31.65
24.72 | 27.36 | 28.19 | 27.98 29.01 28.64 28.29 28.52 28.59 27.47
24.71 | 29.46 | 30.39 | 30.12 30.86 30.71 29.99 30.35 30.57 29.53
24.96 | 31.08 | 32.10 | 31.84 32.41 32.40 31.62 32.02 32.20 31.22
25.68 | 30.92 | 31.74 | 31.54 32.10 32.00 31.49 31.78 31.85 31.11
24.66 | 29.75 | 30.81 | 30.49 31.48 31.29 30.52 30.94 31.05 29.84
24.66 | 30.14 | 31.10 | 30.84 31.49 31.46 30.68 31.07 31.22 30.25
24.71 | 31.85 | 33.15 | 32.84 33.45 33.69 32.47 33.03 33.25 32.05
24.82 | 29.91 | 30.93 | 30.62 31.47 31.31 30.54 30.96 31.10 30.00

e =
NEBoo~NoobwN R
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Experimental Results Image denoising

Image denoising on McMaster dataset

Noisy | €001 [ 20T [ 22T [ 00T [ g2l T s T T gZeo T T gl gl T g gt

25.32 | 29.29 | 29.83 | 29.64 29.74 29.52 28.97 29.25 29.98 29.16
24.90 | 27.80 | 28.41 | 28.26 28.43 28.32 27.80 28.02 28.60 27.75
25.46 | 30.44 | 30.96 | 30.84 30.78 30.66 30.16 30.39 31.17 30.33
25.14 | 29.26 | 29.91 | 29.75 29.95 29.82 29.30 29.54 30.13 29.22
25.62 | 31.11 | 31.46 | 31.40 30.97 30.84 30.33 30.55 31.64 30.89
25.01 | 29.83 | 30.49 | 30.32 30.34 30.13 29.55 29.84 30.74 29.68
25.21 | 30.96 | 31.63 | 31.48 31.41 31.21 30.66 30.98 31.80 30.87
25.34 | 31.98 | 32.72 | 32.60 32.50 32.30 31.78 32.15 32.88 31.99
25.21 | 32.54 | 33.36 | 33.32 33.08 32.93 32.50 32.85 33.53 32.70
24.69 | 32.26 | 33.06 | 33.02 32.70 32.54 32.10 32.49 33.20 32.37
25.55 | 30.21 | 30.85 | 30.75 30.87 30.73 30.35 30.59 30.98 30.29
25.21 | 30.58 | 31.18 | 30.99 31.11 30.87 30.36 30.69 31.30 30.50
25.22 | 30.52 | 31.16 | 31.03 30.99 30.82 30.32 30.61 31.33 30.48
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Image denoising: local vs nonlocal CTV

Experimental Results
Image denoising: local vs nonlocal CTV

Noisy LI TV, PSNR = 33.60
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Experimental Results Image denoising: local vs nonlocal CTV

Experimental Results
Image denoising: local vs nonlocal CTV

Noisy £HLT — NLTV, PSNR = 35.41
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Image denoising: local vs nonlocal CTV

Experimental Results
Image denoising: local vs nonlocal CTV

Noisy L1 _ TV, PSNR = 34.88
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Experimental Results Image denoising: local vs nonlocal CTV

Experimental Results
Image denoising: local vs nonlocal CTV

Noisy £22:L.1 _ NLTV, PSNR = 35.65
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Experimental Results Image inpainting

Experimental Results
Image inpainting

Noisy (o = 30) 2111(col, der, pix)
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Experimental Results Image inpainting

Experimental Results
Image inpainting

Noisy (o = 30) (5°°(col, der), £*(pix))
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Experimental Results Image inpainting

Experimental Results
Image inpainting

Noisy (o = 30) 02251 (der, col, pix)
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Experimental Results Image inpainting

Experimental Results
Image inpainting

Noisy (o = 30) 0211(col, der, pix)
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Experimental Results Image inpainting

Experimental Results
Image inpainting

Noisy (o = 30) (5%(col, der), £1(pix))
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Experimental Results Image inpainting

Experimental Results
Image inpainting

Noisy (o = 30) 2251 (col, der, pix)
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Experimental Results On Line Demo

Experimental Results
On Line Demo

|IPOL

IMAGE PROCESSING ON LINE

N
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Conclusions

Conclusions
@ We introduced a unified framework for VTV based on collaborative enforcing norms.
@ Depending on the inter-channel correlation, different CTV regularizations are suited.
e (>>"' and (S, ¢") best exploit inter-channel correlations.

o We introduced respective Nonlocal CTV regularizations.

@ We proposed the primal-dual algorithm to solve the minimization problem.

Collaborative Regularization for Color Imaging Problems [EIITET] 27 /271



Conclusions

Conclusions

@ We introduced a unified framework for VTV based on collaborative enforcing norms.

Depending on the inter-channel correlation, different CTV regularizations are suited.

€5 and (S',€") best exploit inter-channel correlations.
o We introduced respective Nonlocal CTV regularizations.
@ We proposed the primal-dual algorithm to solve the minimization problem.
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Proximity operator of 79" norms

o /MY _norm:
1
(p”’Xénwh,l,l(A)),M = max <|A gkl = ) sign (Aij.k)-

o »H _norm:

1 Aijk
(prOX%H'”Zl,l(A))I-d-’k = max (HA igellz — 0) I|A; JJ ll2"

o />%1 _norm:
1 Ak
(proxin_um,l( ) Pk max <|| fatsi |2 2= 0) ”AI, ) ||2 2

o °11_norm decouples at each j and k so we are left with an £*° problem computed
by means of the projection onto unit ¢! dual ball:

1. .
(prox%HAHQC_’M(A))I_J* =Aijk— —sign (A,-,j,k) (prOJH,ngl (U|A,-,j,:|))

where A; ;. denotes the vector obtained by staking third dimension.
e (°°>! _norm:

1. .
(Proxéu~||w,m,1(A)),.j P Ak = 5 Sen (Aijk) (Pr°J|\~u1,1§1 (”|Af~~|)). o

ok
with A;
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L. b
isjk

being the vector obtained by stacking second and third dimensions.

LN



o %1 _norm:

1. .
(PVOX%H‘HOQ“(A))U P Aijk — o oen (Ai,j,k) (PVOJH,HLZQ (O‘Ai,:,:D)U o
where proj., ,<; denotes the projection onto unit 22 —norm ball.

o (%! _norm:

Aiik 1
rox A) = 0% max [ ||Aij:|l — =Vvi;,0
(p %H'HQ,QC,I( ) Pk ||Ai7jv:H2 (H 1) H2 o ) ) ’

where v, ; = (proxH,H1§1 (a(||A,-,j,;H2)j)>l_J_, and (HAi,j,:HZ)J- denotes the vector

obtained by stacking ||Ai ;|| for all j.
Let f: R™™ — R" be fi(u) := />°", u?; = ||ui.|]2, and let g : R" — R be proper

convex function being nondecreasing in each argument. Then

uij
(proxT(gof)(u))iJ = Hu,—l;j||2 max (Hu,»,;||2 - 7'v,‘,0)7

where the v;’s are the components of the vector v € R" that solves

2

. 1.,
v = arg min 5 w—;f(u) -8 (w).

1 ‘ 1
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Proximity operators of (S°,£7) norms

If g =1, the proximity operator decouples at each pixel:
o Define M x C submatrix B := (Aij,k)—1, k=1, c-

@ Let B = B/, we need to solve at each pixel

_min 21D~ BI} + D]

e Computing SVD of B = UX,V" and ¥ = UT DV, the problem is equivalent to

1 1 1 1
min  Z[[U'DV — 5o|[f + =||[U'DV|lss & min Z|X — Lo||F + =||Z||se.
2 o YeRrxr 2 o

DeRMxC

o For diagonal matrices 5”(X) = (”(diag(X)), so that we finally solve

1
min > ls—slE+= 5 lIslle,

where sy = diag(Xo) and s = diag(X).

@ Only need to compute eigenvalues, ¥, and eigenvectors, V, of B B;.
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o
o Let ¥ sit. diag(f) = argmins 3||s — soll3 + L|Is]l»
e The proximity operator D = arg minp HID = B|5 + X||D||s» is D=usvT.

@ Due to B = ULV, communitation of diagonal matrices, and EZOZ(’; =¥ —since
Y has at most as many nonzero diagonal entries as ¥y —, one has

BV = US, = BVE = US,% = USY,
= BVEY{ = UL = BVES{V' = UsVT =D,

where Zg denotes the pseudo-inverse matrix of ¥, i.e.

I~ ) ifi=7/and (so)i.i 07
(zg)i,j = (%o0)i,i J (s0)i,i #
0 otherwise.

@ Therefore, the proximity operator is
D=BvEsiv’,

where
- diag(Xo) consists of the square root of the eigenvalues of B” B.
- col(V) are the eigenvectors of B" B.
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Image Denoising
. A 2
Jmin  AI1Kulls.a + 5 llu = FllF,

where f € R"* is the noisy image, A > 0 the regularization parameter, and || - ||5.
denotes either an 79" norm or a Schatten (S, £7) norm.

The proximity operator of G(u) = 3|lu— f[|7 is
— )1 2 A 2 U+ T
prox, o(u) = argaip { 31v — ulf + 73w = 11} & proxo(w) = 457

Therefore, the solution of u™™' = prox_ ¢ (u" — 7,K"2") is given by

i (—KTz"—i—)\f)
Y - 14+ 1A ’

where —KT = div is defined as (—divz, u)x = (z, Ku)y.
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Image Deconvolution

min _ ||Ku|
ueRNXC

A
ba+ 5[ Au— 7,
2
with A being the linear operator modelling the convolution of u with a Gaussian kernel.s

The proximity operator of G(u) = 3[|Au— f| is

i = arg min {%Hv —ulF + T%HAV - f||2F} & U= (I+7AAA) " (u+TAATF).
ve

Computing (/ + 7AA*A)™" is huge time consuming in the spatial domain. On the
contrary, using FFT, the solution can be efficiently computed as

1 [ Flu) + TAF(A)E(F)
u=7 ( 1+ TAF(A)? )
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