Deep Learning Last trends and applications

Joan Duran Grimalt

Tractament i Anàlisi Matemàtica d'Imatges (TAMI)

Departament de Ciències Matemàtiques i Informàtica

A world full of images

A world full of images

A world full of images

The frontiers of computer vision

Computer vision

- is an interdisciplinary field of research that deals with how computers can be made for gaining high-level understanding from digital images or videos.
- seeks to automate tasks that the human visual system can do.

Deep Learning for Computer Vision

The Good, the Bad and the Ugly

• Traditional programming designs a precise model for the desired task.

- Traditional programming designs a precise model for the desired task.
- The definition of such a model may be extremely complicated.

How can we define "breakfast" mathematically?

- Traditional programming designs a precise model for the desired task.
- The definition of such a model may be extremely complicated.

How can we define "cat" mathematically?

- Traditional programming designs a precise model for the desired task.
- The definition of such a model may be extremely complicated.

How can we define "cat" mathematically?

- Traditional programming designs a precise model for the desired task.
- The definition of such a model may be extremely complicated.
- The emergence of large labelled datasets allows learning from examples.

• With massive computational power, large datasets can be tackled through learning techniques.

- With massive computational power, large datasets can be tackled through learning techniques.
- Machine learning gives computers the ability to learn without need of explicit model.

- With massive computational power, large datasets can be tackled through learning techniques.
- Machine learning gives computers the ability to learn without need of explicit model.
- Unsupervised learning and supervised learning.

Segmentation

- With massive computational power, large datasets can be tackled through learning techniques.
- Machine learning gives computers the ability to learn without need of explicit model.
- Unsupervised learning and supervised learning.

Classification

- With massive computational power, large datasets can be tackled through learning techniques.
- Machine learning gives computers the ability to learn without need of explicit model.
- Unsupervised learning and supervised learning.

Detection & Classification

- With massive computational power, large datasets can be tackled through learning techniques.
- Machine learning gives computers the ability to learn without need of explicit model.
- Unsupervised learning and supervised learning.

- With massive computational power, large datasets can be tackled through learning techniques.
- Machine learning gives computers the ability to learn without need of explicit model.
- Unsupervised learning and supervised learning:
 - Dataset of pairs $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$, usually $n \gg 1$.
 - The goal is to find a function f that best maps each x_i to each y_i .
 - One commonly chooses a family of parametric functions $f(x; \theta) = f_{\theta}(x)$.
 - Define a loss function $\mathcal{L}(f_{\theta}(x), y)$ between predictions $f_{\theta}(x_i)$ and labels y_i .
 - Choose a method to minimize the loss for each (?) pair in the dataset.
 - Learning "reduces" to solve the optimization problem

$$\arg\min_{\theta} \sum_{i=1}^{n} \mathcal{L}(f_{\theta}(\mathbf{x}_i), y_i)$$

- With massive computational power, large datasets can be tackled through learning techniques.
- Machine learning gives computers the ability to learn without need of explicit model.
- Unsupervised learning and supervised learning:
 - Dataset of pairs $\{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}, n \gg 1$.
 - The goal is to find a function f that best maps each x_i to each y_i .
 - One commonly chooses a family of parametric functions $f(x; \theta) = f_{\theta}(x)$.
 - Define a loss function $\mathcal{L}(f_{\theta}(x), y)$ between predictions $f_{\theta}(x_i)$ and labels y_i .
 - Choose a method to minimize the loss for each (?) pair in the dataset.
 - Learning "reduces" to solve the optimization problem

$$\arg\min_{\theta} \sum_{i=1}^{n} \mathcal{L}(f_{\theta}(\mathbf{x}_{i}), y_{i})$$

THE BLACK BOX

- With massive computational power, large datasets can be tackled through learning techniques.
- Machine learning gives computers the ability to learn without need of explicit model.
- Unsupervised learning and supervised learning:
 - Dataset of pairs $\{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}, n \gg 1$.
 - The goal is to find a function f that best maps each x_i to each y_i .
 - One commonly chooses a family of parametric functions $f(x; \theta) = f_{\theta}(x)$.
 - Define a loss function $\mathcal{L}(f_{\theta}(\mathbf{x}), y)$ between predictions $f_{\theta}(\mathbf{x}_i)$ and labels y_i .
 - Choose a method to minimize the loss for each (?) pair in the dataset.
 - Learning "reduces" to solve the optimization problem

$$\arg\min_{\theta} \sum_{i=1}^{n} \mathcal{L}(f_{\theta}(\mathbf{x}_i), y_i)$$

Traditional programming

Modelling function f

- With massive computational power, large datasets can be tackled through learning techniques.
- Machine learning gives computers the ability to learn without without need of explicit model.
- Unsupervised learning and supervised learning:
 - Dataset of pairs $\{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}, n \gg 1.$
 - The goal is to find a function f that best maps each x_i to each y_i .
 - One commonly chooses a family of parametric functions $f(x; \theta) = f_{\theta}(x)$.
 - Define a loss function $\mathcal{L}(f_{\theta}(x), y)$ between predictions $f_{\theta}(x_i)$ and labels y_i .
 - Choose a method to minimize the loss for each (?) pair in the dataset.
 - Learning "reduces" to solve the optimization problem

$$\arg\min_{\theta} \sum_{i=1}^{n} \mathcal{L}(f_{\theta}(\mathbf{x}_i), y_i)$$

Machine Learning

Modelling function f - Hyperparameters $oldsymbol{ heta}$

- With massive computational power, large datasets can be tackled through learning techniques.
- Machine learning gives computers the ability to learn without need of explicit model.
- Unsupervised learning and supervised learning.
- Challenges in optimization:
 - Ill-conditioning.
 - Local minima in non-convex problems.
 - Saddle points and other flat regions.
 - Cliffs and exploiting gradients.
 - Long-term dependencies.
 - Inexact gradients.
 - Poor correspondence between local and global structure.
 - Theoretical limits of optimization.

- With massive computational power, large datasets can be tackled through learning techniques.
- Machine learning gives computers the ability to learn without need of explicit model.
- Unsupervised learning and supervised learning.
- Challenges in optimization:
 - Ill-conditioning.
 - Local minima in non-convex problems.
 - Saddle points and other flat regions.
 - Cliffs and exploiting gradients.
 - Long-term dependencies.
 - Inexact gradients.
 - Poor correspondence between local and global structure.
 - Theoretical limits of optimization.

Blind faith in the "black box" is critical. Mathematics are a must!

Mathematics are a must

• Computer vision

- is an interdisciplinary field of research that deals with how computers can be made for gaining high-level understanding from digital images or videos.
- seeks to automate tasks that the human visual system can do.

ARTIFICIAL INTELLIGENCE PATTERN MACHINE RECOGNITION LEARNING MATHS IMAGE & SIGNAL COMPUTER PROCESSING VISION ROBOTICS PHYSICS

Mathematics are a must

• Computer vision

- is an interdisciplinary field of research that deals with how computers can be made for gaining high-level understanding from digital images or videos.
- seeks to automate tasks that the human visual system can do.

• High-dimensional data makes difficult to learn complicated functions in high-dimensional spaces.

- High-dimensional data makes difficult to learn complicated functions in high-dimensional spaces.
- Huge intra-class representation variety: deformations, occlusions, illumination, viewpoints, etc.

- High-dimensional data makes difficult to learn complicated functions in high-dimensional spaces.
- Huge intra-class representation variety: deformations, occlusions, illumination, viewpoints, etc.

- High-dimensional data makes difficult to learn complicated functions in high-dimensional spaces.
- Huge intra-class representation variety: deformations, occlusions, illumination, viewpoints, etc.

- High-dimensional data makes difficult to learn complicated functions in high-dimensional spaces.
- Huge intra-class representation variety: deformations, occlusions, illumination, viewpoints, etc.

- High-dimensional data makes difficult to learn complicated functions in high-dimensional spaces.
- Huge intra-class representation variety: deformations, occlusions, illumination, viewpoints, etc.

• Learning the representation is nearly as difficult as to solve the primal task!

- Learning the representation is nearly as difficult as to solve the primal task!
- Deep learning
 - uses a cascade of multiple layers for feature extraction and transformation;

- Learning the representation is nearly as difficult as to solve the primal task!
- Deep learning
 - uses a cascade of multiple layers for feature extraction and transformation;
 - learns multiple levels of representations that correspond to different levels of abstraction;

- Learning the representation is nearly as difficult as to solve the primal task!
- Deep learning
 - uses a cascade of multiple layers for feature extraction and transformation;
 - learns multiple levels of representations that correspond to different levels of abstraction;
 - uses some form of gradient descent for training via backpropagation:

$$\arg\min_{\theta} \sum_{i=1}^{n} \mathcal{L}(f_{\theta}(\boldsymbol{x}_{i}), y_{i}) + \lambda \cdot R(\theta)$$

Traditional programming

Modelling function f

- Learning the representation is nearly as difficult as to solve the primal task!
- Deep learning
 - uses a cascade of multiple layers for feature extraction and transformation;
 - learns multiple levels of representations that correspond to different levels of abstraction;
 - uses some form of gradient descent for training via backpropagation:

$$\arg\min_{\theta} \sum_{i=1}^{n} \mathcal{L}(f_{\theta}(\boldsymbol{x}_{i}), y_{i}) + \lambda \cdot R(\theta)$$

Machine Learning

Modelling function f - Hyperparameters $oldsymbol{ heta}$

Deep Learning

- Learning the representation is nearly as difficult as to solve the primal task!
- Deep learning
 - uses a cascade of multiple layers for feature extraction and transformation;
 - learns multiple levels of representations that correspond to different levels of abstraction;
 - uses some form of gradient descent for training via backpropagation:

$$\arg\min_{\theta} \sum_{i=1}^{n} \mathcal{L}(f_{\theta}(\boldsymbol{x}_{i}), y_{i}) + \lambda \cdot R(\theta)$$

Deep Learning

Modelling function f - Hyperparameters $oldsymbol{ heta}$

Deep Learning

- Learning the representation is nearly as difficult as to solve the primal task!
- Deep learning
 - uses a cascade of multiple layers for feature extraction and transformation;
 - learns multiple levels of representations that correspond to different levels of abstraction;
 - uses some form of gradient descent for training via backpropagation:

$$\arg\min_{\theta} \sum_{i=1}^{n} \mathcal{L}(f_{\theta}(\boldsymbol{x}_{i}), y_{i}) + \lambda \cdot R(\theta)$$

• Convolutional neural networks use convolution + pooling operators to process data with known grid-like topology and possibly of variable size, such as images.

• Images are challenging: noise, blur, perturbations, deformations, anomalies, etc.

• Images are challenging: noise, blur, perturbations, deformations, anomalies, etc.

• Images are challenging: noise, blur, perturbations, deformations, anomalies, etc.

Original image Temple (97%)

Adversarial example
Ostrich (98%)

• Images are challenging: noise, blur, perturbations, deformations, anomalies, etc.

Original image Temple (97%)

Adversarial example
Ostrich (98%)

Blind faith in the "black box" is critical. Image processing is a must!

- Images are challenging: noise, blur, perturbations, deformations, anomalies, etc.
- Challenges in optimization.

- Images are challenging: noise, blur, perturbations, deformations, anomalies, etc.
- Challenges in optimization.
- Grid search or the Survival of the Fittest.

- Images are challenging: noise, blur, perturbations, deformations, anomalies, etc.
- Challenges in optimization.
- Grid search or the Survival of the Fittest.
- Democratization is good and not-so-good:
 - In Academia, people are distorted from the really important and harder questions.
 - In Industry, applying deep learning to a dataset is not going to make you *unique* anymore.

- Images are challenging: noise, blur, perturbations, deformations, anomalies, etc.
- Challenges in optimization.
- Grid search or the Survival of the Fittest.
- Democratization is good and not-so-good:
 - In Academia, people are distorted from the really important and harder questions.
 - In Industry, applying deep learning to a dataset is not going to make you unique anymore.
- Statistical significance: Quantity overwhelms quality!

- Images are challenging: noise, blur, perturbations, deformations, anomalies, etc.
- Challenges in optimization.
- Grid search or the Survival of the Fittest.
- Democratization is good and not-so-good:
 - In Academia, people are distorted from the really important and harder questions.
 - In Industry, applying deep learning to a dataset is not going to make you unique anymore.
- Statistical significance: Quantity overwhelms quality!
- Fast pace of the field.

- Images are challenging: noise, blur, perturbations, deformations, anomalies, etc.
- Challenges in optimization.
- Grid search or the Survival of the Fittest.
- Democratization is good and not-so-good:
 - In Academia, people are distorted from the really important and harder questions.
 - In Industry, applying deep learning to a dataset is not going to make you *unique* anymore.
- Reproducible research and statistical significance: Quantity overwhelms quality!
- Fast pace of the field.

Deep learning is neither a philosophy nor an application, it is a tool that makes many applications smarter and more natural through experience.

TAMI Research Actions

The road so far...

Industrial panel

Industrial panel Enhancement

Industrial panel Enhancement

Industrial panel Data fusion

Industrial panel Data fusion

Industrial panel 3D Reconstruction from satellite imagery

Industrial panel 3D Reconstruction from satellite imagery

Industrial panel

Industrial panel Demosaicking

Industrial panel Demosaicking

Industrial panel Denoising

Industrial panel Denoising

Industrial panel Denoising

Industrial panel Multi-exposure image fusion

Industrial panel Multi-exposure image fusion

Industrial panel

Industrial panel Video Enhancement

Industrial panel Video Enhancement

Modeling and Deep Learning

Actions and future projects

Learning based actions Face detection

Learning based actions Face detection

Learning based actions Face detection

Learning based actions
Sea grass detection in underwater areas

- Deep learning for depth estimation in light-field capturing devices and multi-camera datasets.
- Deep learning for view synthesis.
- 3D scene reconstruction using depth and image views.

Learning based actions Geometric deep learning

- Deep learning techniques applied to non grid-like structure:
 - Graphs in social networks and particle physics.
 - Manifolds in computer graphics.
- Define deep neural models for this kind of non-Euclidean data.
- Theoretical inside and applications.

Some Proposals

What makes Paris look like Paris?

SIGGRAPH 2012

WHAT MAKES PARIS LOOK LIKE PARIS?

Carl Doersch¹, Saurabh Singh¹, Abhinav Gupta¹, Josef Sivic² and Alexei A. Efros^{1,2}

¹ Carnegie Mellon University ² INRIA / École Normale Supérieure, Paris

Some Proposals

- Hotel recognition, category classification, hotel location.
- Image restoration: contrast enhancement, noise and blur removal, anomaly detection, superresolution.
- 3D reconstruction of rooms given depth and scene views.
- Detect and discard images not providing relevant information to users.
- Identify repeated images and discard them.
- Classify and detect facilities from hotel images.
- Identify priorities from user interactions and select displayed hotel images accordingly.

Deep Learning Last trends and applications

Joan Duran Grimalt

Tractament i Anàlisi Matemàtica d'Imatges (TAMI)

Departament de Ciències Matemàtiques i Informàtica

- CNNs use convolution operators to process data with known grid-like topology and possibly of variable size, such as images.
- Stages of a CNNs layer:
 - 1. Perform several convolutions in parallel to produce a set of linear activations.

- CNNs use convolution operators to process data with known grid-like topology and possibly of variable size, such as images.
- Stages of a CNNs layer:
 - 1. Perform several convolutions in parallel to produce a set of linear activations.

- CNNs use **convolution operators** to process data with known grid-like topology and possibly of variable size, such as images.
- Stages of a CNNs layer:
 - 1. Perform several convolutions in parallel to produce a set of linear activations.

- CNNs use convolution operators to process data with known grid-like topology and possibly of variable size, such as images.
- Stages of a CNNs layer:
 - 1. Perform several convolutions in parallel to produce a set of linear activations.

- CNNs use convolution operators to process data with known grid-like topology and possibly of variable size, such as images.
- Stages of a CNNs layer:
 - 1. Perform several convolutions in parallel to produce a set of linear activations.

- CNNs use **convolution operators** to process data with known grid-like topology and possibly of variable size, such as images.
- Stages of a CNNs layer:
 - 1. Perform several convolutions in parallel to produce a set of linear activations.

- CNNs use **convolution operators** to process data with known grid-like topology and possibly of variable size, such as images.
- Stages of a CNNs layer:
 - 1. Perform several convolutions in parallel to produce a set of linear activations.

- CNNs use convolution operators to process data with known grid-like topology and possibly of variable size, such as images.
- Stages of a CNNs layer:
 - 2. Apply a nonlinear activation function g (sigmoid, tanh, ReLU) to each linear activation map a_i .

- CNNs use **convolution operators** to process data with known grid-like topology and possibly of variable size, such as images.
- Stages of a CNNs layer:
 - 3. Apply a pooling function to each activation map (subsampling), simplifying the representation.

- CNNs use convolution operators to process data with known grid-like topology and possibly of variable size, such as images.
- Stages of a CNNs layer:
 - 1. Perform several convolutions in parallel to produce a set of linear activations.
 - 2. Apply a nonlinear activation function to each linear activation map.
 - 3. Apply a pooling function to each activation map (subsampling), simplifying the representation.
- CNNs leverages sparse connectivity, parameter sharing and equivariant representations.
 - Image statistics are invariant to translations.
 - Low-level features (edges) are local, so local connectivity is imposed through kernel support.
 - High-level features are expected to be thick, so pooling is used as long as CNNs depth increases.

$$u(x) = f\left(\frac{I(x)}{I * \kappa(x)}\right)$$

$$u(x) = f\left(\frac{I(x)}{I * \kappa(x)}\right)$$

