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The frontiers of computer vision
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- isaninterdisciplinary field of
research that deals with how
computers can be made for
gaining high-level understanding
from digital images or videos.
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- seeks to automate tasks that the
human visual system can do.



Deep Learning for Computer Vision
The Good, the Bad and the Ugly
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From modelling to learning

 Traditional programming designs a precise model for the desired task.

* The definition of such a model may be extremely complicated.

The emergence of large labelled datasets allows learning from examples.
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*  With massive computational power, large datasets can be tackled through learning techniques.
* Machine learning gives computers the ability to learn without need of explicit model.

Unsupervised learning and supervised learning:

- Dataset of pairs {(xl, yl), (xz, yz), ) (xn, yn)}, usuallyn > 1.

- The goalisto find a function f that best maps each x; to each y;,.

- One commonly chooses a family of parametric functions f (x; 0) = fp(x).

- Define a loss function L(fg(x), y) between predictions fy(x;) and labels y;.
- Choose a method to minimize the loss for each (?) pair in the dataset.

Learning “reduces” to solve the optimization problem

arg main Z L(fo(x),v;)
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Machine learning

With massive computational power, large datasets can be tackled through learning techniques.
Machine learning gives computers the ability to learn without need of explicit model.
Unsupervised learning and supervised learning.

Challenges in optimization:

- Ill-conditioning.

- Local minima in non-convex problems.

- Saddle points and other flat regions.

- Cliffs and exploiting gradients.

- Long-term dependencies.

- Inexact gradients.

- Poor correspondence between local and global structure.
Theoretical limits of optimization.
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With massive computational power, large datasets can be tackled through learning techniques.
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Blind faith in the "black box"” is critical. Mathematics are a must!
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Deep learning

- uses a cascade of multiple layers for feature extraction and transformation;
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Deep Learning

 Learning the representation is nearly as difficult as to solve the primal task!
* Deep learning
- uses a cascade of multiple layers for feature extraction and transformation;

- learns multiple levels of representations that correspond to different levels of abstraction;
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Deep Learning

 Learning the representation is nearly as difficult as to solve the primal task!
* Deep learning
- uses a cascade of multiple layers for feature extraction and transformation;
- learns multiple levels of representations that correspond to different levels of abstraction;

- uses some form of gradient descent for training via backpropagation:
n
argmin » £(fo(x), 1) + 2+ R(0)
i=1

Convolutional neural networks use convolution + pooling operators to process data with known
grid-like topology and possibly of variable size, such as images.

FC

| Prediction
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The Bad and the Ugly

Images are challenging: noise, blur, perturbations, deformations, anomalies, etc.

Original image Adversarial example

Temple (97%) Ostrich (98%)

Blind faith in the "“black box” is critical. Image processing is a must!
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The Bad and the Ugly

Images are challenging: noise, blur, perturbations, deformations, anomalies, etc.

Challenges in optimization.
Grid search or the Survival of the Fittest.

Democratization is good and not-so-good:

- InAcademia, people are distorted from the really important and harder questions.

- InIndustry, applying deep learning to a dataset is not going to make you unique anymore.
Reproducible research and statistical significance: Quantity overwhelms quality!

Fast pace of the field.

Deep learning is neither a philosophy nor an application, it is a tool that
makes many applications smarter and more natural through experience.




TAMI Research Actions

The road so far...
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Industrial panel
3D Reconstruction from satellite imagery
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Industrial panel
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\7’@\ Gognitech



/= Counitech Industrial panel
o/ i Video Enhancement




/=\ Counitech Industrial panel
&/ TheBegBefore&Aﬂer Video Enhancement



Modeling and Deep Learning

Actions and future projects
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Learning based actions
Sea grass detection in underwater areas
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Learning based actions
Light-field images

technicolor

* Deep learning for depth estimation in light-field capturing devices and multi-camera datasets.

N

* Deep learning for view synthesis.

» 3D scene reconstruction using depth and image views.



Learning based actions
Geometric deep learning

COURANT INSTITUTE OF
MATHEMATICAL SCIENCES

v NYU

* Deep learning techniques applied to non grid-like structure:

- Graphs in social networks and particle physics.
- Manifolds in computer graphics.

* Define deep neural models for this kind of non-Euclidean data.

* Theoretical inside and applications.



Some Proposals




What makes Paris look like Paris?

SIGGRAPH 2012

WHAT MAKES PARIS LOOK

LIKE PARIS?

Carl Doersch', Saurabh Singh', Abhinav Gupta',
Josef Sivic? and Alexei A. Efros'?

I Carnegie Mellon University 2 INRIA / Ecole Normale Supérieure, Paris




Some Proposals

* Hotel recognition, category classification, hotel location.

* Image restoration: contrast enhancement, noise and blur removal, anomaly detection, super-
resolution.

3D reconstruction of rooms given depth and scene views.

* Detect and discard images not providing relevant information to users.
* Identify repeated images and discard them.

 Classify and detect facilities from hotel images.

|dentify priorities from user interactions and select displayed hotel images accordingly.
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Convolutional Neural Networks
CNNs use convolution operators to process data with known grid-like topology and possibly of
variable size, such as images.

Stages of a CNNs layer:
1.

Perform several convolutions in parallel to produce a set of linear activations.
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Convolutional Neural Networks

* CNNs use convolution operators to process data with known grid-like topology and possibly of
variable size, such as images.

Stages of a CNNs layer:
1. Perform several convolutions in parallel to produce a set of linear activations.
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* CNNs use convolution operators to process data with known grid-like topology and possibly of
variable size, such as images.

Stages of a CNNs layer:
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Convolutional Neural Networks

* CNNs use convolution operators to process data with known grid-like topology and possibly of
variable size, such as images.

Stages of a CNNs layer:
2. Apply a nonlinear activation function g (sigmoid, tanh, ReLU) to each linear activation map a;.

C
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Convolutional Neural Networks

* CNNs use convolution operators to process data with known grid-like topology and possibly of
variable size, such as images.

Stages of a CNNs layer:
3. Apply a pooling function to each activation map (subsampling), simplifying the representation.
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Convolutional Neural Networks

CNNs use convolution operators to process data with known grid-like topology and possibly of
variable size, such as images.

Stages of a CNNs layer:

1. Perform several convolutions in parallel to produce a set of linear activations.

2. Apply a nonlinear activation function to each linear activation map.
3. Apply a pooling function to each activation map (subsampling), simplifying the representation.

CNNs leverages sparse connectivity, parameter sharing and equivariant representations.
- Image statistics are invariant to translations.
- Low-level features (edges) are local, so local connectivity is imposed through kernel support.
- High-level features are expected to be thick, so pooling is used as long as CNNs depth increases.
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Applications in Computer Vision
Image Enhancement
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