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The frontiers of computer vision

• Computer vision

- is an interdisciplinary field of 
research that deals with how 
computers can be made for 
gaining high-level understanding 
from digital images or videos.

- seeks to automate tasks that the 
human visual system can do.



Deep Learning for Computer Vision
The Good, the Bad and the Ugly
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• Traditional programming designs a precise model for the desired task.

• The definition of such a model may be extremely complicated.

• The emergence of large labelled datasets allows learning from examples.

From modelling to learning

Data                   Output
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• Unsupervised learning and supervised learning:

- Dataset of pairs !"𝒙!, 𝑦! , !"𝒙", 𝑦" , … , !"𝒙#, 𝑦# , usually 𝑛 ≫ 1.

- The goal is to find a function 𝑓 that best maps each 𝒙$ to each 𝑦$.

- One commonly chooses a family of parametric functions 𝑓 )(𝒙; 𝜃 = 𝑓%(𝒙).

- Define a loss function ℒ )(𝑓% 𝒙 , 𝑦 between predictions 𝑓% 𝒙$ and labels 𝑦$.

- Choose a method to minimize the loss for each (?) pair in the dataset.

- Learning “reduces’’ to solve the optimization problem
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Blind faith in the “black box” is  critical. Mathematics are a must!



PATTERN 
RECOGNITION

ARTIFICIAL 
INTELLIGENCE

IMAGE & 
SIGNAL

PROCESSING

MACHINE 
LEARNING

ROBOTICSPHYSICS

MATHS

COMPUTER 
VISION

Mathematics are a must

• Computer vision

- is an interdisciplinary field of 
research that deals with how 
computers can be made for 
gaining high-level understanding 
from digital images or videos.

- seeks to automate tasks that the 
human visual system can do.



PATTERN 
RECOGNITION

ARTIFICIAL 
INTELLIGENCE

IMAGE & 
SIGNAL

PROCESSING

MACHINE 
LEARNING

ROBOTICSPHYSICS

COMPUTER 
VISION

MATHS

Mathematics are a must

• Computer vision

- is an interdisciplinary field of 
research that deals with how 
computers can be made for 
gaining high-level understanding 
from digital images or videos.

- seeks to automate tasks that the 
human visual system can do.



Images are challenging!
• High-dimensional data makes difficult to learn complicated functions in high-dimensional spaces.



Images are challenging!
• High-dimensional data makes difficult to learn complicated functions in high-dimensional spaces.

• Huge intra-class representation variety: deformations, occlusions, illumination, viewpoints, etc.



Images are challenging!
• High-dimensional data makes difficult to learn complicated functions in high-dimensional spaces.

• Huge intra-class representation variety: deformations, occlusions, illumination, viewpoints, etc.



Images are challenging!
• High-dimensional data makes difficult to learn complicated functions in high-dimensional spaces.

• Huge intra-class representation variety: deformations, occlusions, illumination, viewpoints, etc.



Images are challenging!
• High-dimensional data makes difficult to learn complicated functions in high-dimensional spaces.

• Huge intra-class representation variety: deformations, occlusions, illumination, viewpoints, etc.



Images are challenging!
• High-dimensional data makes difficult to learn complicated functions in high-dimensional spaces.

• Huge intra-class representation variety: deformations, occlusions, illumination, viewpoints, etc.



Deep Learning
• Learning the representation is nearly as difficult as to solve the primal task!



Deep Learning
• Learning the representation is nearly as difficult as to solve the primal task!

• Deep learning

- uses a cascade of multiple layers for feature extraction and transformation;



Deep Learning
• Learning the representation is nearly as difficult as to solve the primal task!

• Deep learning

- uses a cascade of multiple layers for feature extraction and transformation;

- learns multiple levels of representations that correspond to different levels of abstraction;



Deep Learning
• Learning the representation is nearly as difficult as to solve the primal task!

• Deep learning

- uses a cascade of multiple layers for feature extraction and transformation;

- learns multiple levels of representations that correspond to different levels of abstraction;

- uses some form of gradient descent for training via backpropagation:

argmin
%
7
$&!

#

ℒ !"𝑓% 𝒙$ , 𝑦$ + 𝜆 ⋅ 𝑅 )(𝜃

Traditional programming

Modelling function 𝑓



Deep Learning
• Learning the representation is nearly as difficult as to solve the primal task!

• Deep learning

- uses a cascade of multiple layers for feature extraction and transformation;

- learns multiple levels of representations that correspond to different levels of abstraction;

- uses some form of gradient descent for training via backpropagation:

argmin
%
7
$&!

#

ℒ !"𝑓% 𝒙$ , 𝑦$ + 𝜆 ⋅ 𝑅 )(𝜃

Machine Learning

Modelling function 𝑓 - Hyperparameters𝜽



Deep Learning
• Learning the representation is nearly as difficult as to solve the primal task!

• Deep learning

- uses a cascade of multiple layers for feature extraction and transformation;

- learns multiple levels of representations that correspond to different levels of abstraction;

- uses some form of gradient descent for training via backpropagation:

argmin
%
7
$&!

#

ℒ !"𝑓% 𝒙$ , 𝑦$ + 𝜆 ⋅ 𝑅 )(𝜃

Deep Learning

Modelling function 𝒇 - Hyperparameters𝜽



Deep Learning
• Learning the representation is nearly as difficult as to solve the primal task!

• Deep learning

- uses a cascade of multiple layers for feature extraction and transformation;

- learns multiple levels of representations that correspond to different levels of abstraction;

- uses some form of gradient descent for training via backpropagation:
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• Convolutional neural networks use convolution + pooling operators to process data with known
grid-like topology and possibly of variable size, such as images.
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The Bad and the Ugly
• Images are challenging: noise, blur, perturbations, deformations, anomalies, etc.

• Challenges in optimization.

• Grid search or the Survival of the Fittest.

• Democratization is good and not-so-good:

- In Academia, people are distorted from the really important and harder questions.

- In Industry, applying deep learning to a dataset is not going to make you unique anymore.

• Reproducible research and statistical significance: Quantity overwhelms quality!

• Fast pace of the field.

Deep learning is neither a philosophy nor an application, it is a tool that
makes many applications smarter and more natural through experience.



TAMI Research Actions
The road so far…
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Industrial panel
Video Enhancement



Modeling and Deep Learning
Actions and future projects
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Learning based actions
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Learning based actions
Light-field images

• Deep learning for depth estimation in light-field capturing devices and multi-camera datasets.

• Deep learning for view synthesis.

• 3D scene reconstruction using depth and image views.



Learning based actions
Geometric deep learning

• Deep learning techniques applied to non grid-like structure:

- Graphs in social networks and particle physics.
- Manifolds in computer graphics.

• Define deep neural models for this kind of non-Euclidean data.

• Theoretical inside and applications.
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Some Proposals

• Hotel recognition, category classification, hotel location.

• Image restoration: contrast enhancement, noise and blur removal, anomaly detection, super-
resolution.

• 3D reconstruction of rooms given depth and scene views.

• Detect and discard images not providing relevant information to users.

• Identify repeated images and discard them.

• Classify and detect facilities from hotel images.

• Identify priorities from user interactions and select displayed hotel images accordingly.
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Convolutional Neural Networks
• CNNs use convolution operators to process data with known grid-like topology and possibly of

variable size, such as images.

• Stages of a CNNs layer:
1. Perform several convolutions in parallel to produce a set of linear activations.
2. Apply a nonlinear activation function to each linear activation map.
3. Apply a pooling function to each activation map (subsampling), simplifying the representation.

• CNNs leverages sparse connectivity, parameter sharing and equivariant representations.
- Image statistics are invariant to translations.
- Low-level features (edges) are local, so local connectivity is imposed through kernel support.
- High-level features are expected to be thick, so pooling is used as long as CNNs depth increases.
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