Collaborative Regularization Approaches in Multi-Channel Variational Imaging

Joan Duran¹

¹Dept. Mathematics and Computer Science Universitat de les Illes Balears, Mallorca, Spain

Joint work with

Michael Moeller², Daniel Cremers³, Catalina Sbert¹ and Antoni Buades¹

²Inst. Vision and Graphics University of Siegen, Germany ³Dept. Computer Science Technical University of Munich, Germany

February 1st, 2018

III-Posed Inverse Problems in Image Processing

What do you see?

III-Posed Inverse Problems in Image Processing

What do you see?

• The classical inverse problem in imaging writes as $f = \Psi u + \eta$.

- The classical inverse problem in imaging writes as $f = \Psi u + \eta$.
- Most of them are (highly) ill-posed.

- The classical inverse problem in imaging writes as $f = \Psi u + \eta$.
- Most of them are (highly) ill-posed.

- The classical inverse problem in imaging writes as $f = \Psi u + \eta$.
- Most of them are (highly) ill-posed.

 Regularization methods handles ill-posedness by introducing prior knowledge on u, usually assuming smooth solutions.

- The classical inverse problem in imaging writes as $f = \Psi u + \eta$.
- Most of them are (highly) ill-posed.

- Regularization methods handles ill-posedness by introducing prior knowledge on u, usually assuming smooth solutions.
- In the variational framework the regularized solution is computed as

$$\hat{u} = \arg\min_{u} R(u) + \lambda G_f(u),$$

where R(u) is the regularization term, $G_f(u)$ is the data-fidelity term and $\lambda \geq 0$ is a trade-off parameter.

Total Variation

Consider the inverse problem

$$\min_{u \in \mathsf{BV}(\Omega,R)} R(u) + \frac{\lambda}{2} \|Au - f\|_2^2,$$

with $\Omega \subset \mathbb{R}^M$, $f \in L^2(\Omega, \mathbb{R})$ and a linear operator $A : L^2(\Omega) \to L^2(\Omega)$.

Total Variation

Consider the inverse problem

$$\min_{u\in \mathsf{BV}(\Omega,R)} R(u) + \frac{\lambda}{2} \|Au - f\|_2^2,$$

with $\Omega \subset \mathbf{R}^M$, $f \in L^2(\Omega, \mathbf{R})$ and a linear operator $A : L^2(\Omega) \to L^2(\Omega)$.

• A popular regularizer is the total variation [Rudin, Osher, Fatemi '92]:

$$R(u) = \mathsf{TV}(u) = \underbrace{\int_{\Omega} \|\nabla u(x)\|_2 \, dx}_{u \in \mathcal{C}^1(\Omega, R)} = \underbrace{\sup_{\boldsymbol{\xi} \in \Xi} \left\{ \int_{\Omega} u \, \mathsf{div} \, \boldsymbol{\xi} \, dx \right\}}_{u \in \mathcal{L}^1_{\mathrm{loc}}(\Omega, R)},$$

where $\Xi = \{ \boldsymbol{\xi} \in C_c^1(\Omega, \boldsymbol{R}^M) : \|\boldsymbol{\xi}(x)\|_2 \le 1, \ \forall x \in \Omega \}.$

Total Variation

Consider the inverse problem

$$\min_{u \in \mathsf{BV}(\Omega,R)} R(u) + \frac{\lambda}{2} \|Au - f\|_2^2,$$

with $\Omega \subset R^M$, $f \in L^2(\Omega, R)$ and a linear operator $A : L^2(\Omega) \to L^2(\Omega)$.

• A popular regularizer is the total variation [Rudin, Osher, Fatemi '92]:

$$R(u) = \mathsf{TV}(u) = \underbrace{\int_{\Omega} \|\nabla u(x)\|_2 \, dx}_{u \in \mathcal{C}^1(\Omega, R)} = \underbrace{\sup_{\boldsymbol{\xi} \in \Xi} \left\{ \int_{\Omega} u \, \mathsf{div} \, \boldsymbol{\xi} \, dx \right\}}_{u \in \mathcal{L}^1_{\mathrm{loc}}(\Omega, R)},$$

where $\Xi = \{ \boldsymbol{\xi} \in C_c^1(\Omega, \boldsymbol{R}^M) : \|\boldsymbol{\xi}(x)\|_2 \le 1, \ \forall x \in \Omega \}.$

ullet TV is the convex conjugate of the indicator function of convex set $\{\operatorname{div} {\pmb \xi}: {\pmb \xi} \in \Xi\}$.

Total Variation

Consider the inverse problem

$$\min_{u \in \mathsf{BV}(\Omega,R)} R(u) + \frac{\lambda}{2} \|Au - f\|_2^2,$$

with $\Omega \subset \mathbf{R}^M$, $f \in L^2(\Omega, \mathbf{R})$ and a linear operator $A : L^2(\Omega) \to L^2(\Omega)$.

• A popular regularizer is the total variation [Rudin, Osher, Fatemi '92]:

$$R(u) = \mathsf{TV}(u) = \underbrace{\int_{\Omega} \|\nabla u(x)\|_2 \, dx}_{u \in \mathcal{C}^1(\Omega, R)} = \underbrace{\sup_{\boldsymbol{\xi} \in \Xi} \left\{ \int_{\Omega} u \, \mathsf{div} \, \boldsymbol{\xi} \, dx \right\}}_{u \in \mathcal{L}^1_{\mathrm{loc}}(\Omega, R)},$$

where $\Xi = \left\{ \boldsymbol{\xi} \in C_c^1(\Omega, \boldsymbol{R}^M) \, : \, \left\| \boldsymbol{\xi}(\boldsymbol{x}) \right\|_2 \leq 1, \, \, \forall \boldsymbol{x} \in \Omega \right\}.$

- ullet TV is the convex conjugate of the indicator function of convex set $\{\operatorname{div} {\pmb{\xi}}: {\pmb{\xi}} \in \Xi\}$.
- Anisotropic TV follows from using the L^1 norm on the dual variable ξ .

Total Variation

Consider the inverse problem

$$\min_{u\in\mathsf{BV}(\Omega,R)}R(u)+\frac{\lambda}{2}\left\|Au-f\right\|_{2}^{2},$$

with $\Omega \subset \mathbb{R}^M$, $f \in L^2(\Omega, \mathbb{R})$ and a linear operator $A : L^2(\Omega) \to L^2(\Omega)$.

• A popular regularizer is the total variation [Rudin, Osher, Fatemi '92]:

$$R(u) = \mathsf{TV}(u) = \underbrace{\int_{\Omega} \|\nabla u(x)\|_2 \, dx}_{u \in \mathcal{C}^1(\Omega, R)} = \underbrace{\sup_{\boldsymbol{\xi} \in \Xi} \left\{ \int_{\Omega} u \, \mathsf{div} \, \boldsymbol{\xi} \, dx \right\}}_{u \in \mathcal{L}^1_{\mathrm{loc}}(\Omega, R)},$$

where $\Xi = \{ \xi \in C_c^1(\Omega, \mathbb{R}^M) : ||\xi(x)||_2 < 1, \ \forall x \in \Omega \}.$

- TV is the convex conjugate of the indicator function of convex set $\{\text{div } \boldsymbol{\xi} : \boldsymbol{\xi} \in \Xi\}$.
- Anisotropic TV follows from using the L^1 norm on the dual variable ξ .
- TV regularizes the image without smoothing the boundaries of the objects, but fails to recover fine structures and texture.

Nonlocal techniques

• Nonlocal means denoising algorithm [Buades, Coll, Morel '05]:

$$NL[u](x) = \frac{1}{\int_{\Omega} \omega_f(x, y) \, dy} \int_{\Omega} \omega_f(x, y) u(y) \, dy$$

Nonlocal techniques

Nonlocal means denoising algorithm [Buades, Coll, Morel '05]:

$$NL[u](x) = \frac{1}{\int_{\Omega} \omega_f(x, y) \, dy} \int_{\Omega} \omega_f(x, y) u(y) \, dy$$

• Weight distribution $\omega_f: \Omega \times \Omega \to \mathbf{R}$ controlled by a filtering parameter h > 0:

$$\omega_f(x,y) = e^{-\frac{d\rho(f(x),f(y))}{h^2}},$$

with patch-based distance:

$$d_{\rho}(f(x),f(y))=\int_{\Omega}G_{\rho}(t)|f(x+t)-f(y+t)|^2dt.$$

Nonlocal techniques

Nonlocal means denoising algorithm [Buades, Coll, Morel '05]:

$$NL[u](x) = \frac{1}{\int_{\Omega} \omega_f(x, y) \, dy} \int_{\Omega} \omega_f(x, y) u(y) \, dy$$

• Weight distribution $\omega_f: \Omega \times \Omega \to \mathbf{R}$ controlled by a filtering parameter h > 0:

$$\omega_f(x,y) = e^{-\frac{d\rho(f(x),f(y))}{h^2}},$$

with patch-based distance:

$$d_{\rho}(f(x),f(y))=\int_{\Omega}G_{\rho}(t)|f(x+t)-f(y+t)|^{2}dt.$$

Regularity assumption: natural images are self-similar.

Real image demosaicking

Real image denoising

Video denoising

• Neighborhood filters as nonlocal regularization [Gilboa, Osher '08]:

$$R(u) = \int_{\Omega} \int_{\Omega} \left(u(y) - u(x) \right)^2 \omega_f(x, y) \, dy \, dx.$$

• Neighborhood filters as nonlocal regularization [Gilboa, Osher '08]:

$$R(u) = \int_{\Omega} \int_{\Omega} (u(y) - u(x))^2 \, \omega_f(x, y) \, dy \, dx.$$

Nonlocal operators with non-symmetric weights [D., Buades, Coll, Sbert '14]:

$$\nabla_{\omega} u(x,y) = (u(y) - u(x)) \sqrt{\omega_f(x,y)},$$

$$(\operatorname{div}_{\omega} v)(x) = \int_{\Omega} \left(v(x,y) \sqrt{\omega_f(x,y)} - v(y,x) \sqrt{\omega_f(y,x)} \right) dy.$$

Neighborhood filters as nonlocal regularization [Gilboa, Osher '08]:

$$R(u) = \int_{\Omega} \int_{\Omega} (u(y) - u(x))^2 \, \omega_f(x, y) \, dy \, dx.$$

Nonlocal operators with non-symmetric weights [D., Buades, Coll, Sbert '14]:

$$\nabla_{\omega} u(x,y) = (u(y) - u(x)) \sqrt{\omega_f(x,y)},$$

$$(\operatorname{div}_{\omega} v)(x) = \int_{\Omega} \left(v(x,y) \sqrt{\omega_f(x,y)} - v(y,x) \sqrt{\omega_f(y,x)} \right) dy.$$

The nonlocal total variation is defined as

$$R(u) = \mathsf{NLTV}(u) = \int_{\Omega} \left\| \nabla_{\omega} u(x) \right\|_{2} \, dx = \sup_{\boldsymbol{\xi} \in \Xi} \left\{ \int_{\Omega} u \, \mathsf{div}_{\omega} \, \boldsymbol{\xi} \, dx \right\},$$

where
$$\Xi = \{ \boldsymbol{\xi} \in C_c^1(\Omega \times \Omega, \boldsymbol{R}^M) : \| \boldsymbol{\xi}(\boldsymbol{x}, \cdot) \|_2 \le 1, \forall \boldsymbol{x} \in \Omega \}.$$

Neighborhood filters as nonlocal regularization [Gilboa, Osher '08]:

$$R(u) = \int_{\Omega} \int_{\Omega} (u(y) - u(x))^2 \, \omega_f(x, y) \, dy \, dx.$$

Nonlocal operators with non-symmetric weights [D., Buades, Coll, Sbert '14]:

$$\nabla_{\omega} u(x,y) = (u(y) - u(x)) \sqrt{\omega_f(x,y)},$$

$$(\operatorname{div}_{\omega} v)(x) = \int_{\Omega} \left(v(x,y) \sqrt{\omega_f(x,y)} - v(y,x) \sqrt{\omega_f(y,x)} \right) dy.$$

• The nonlocal total variation is defined as

$$R(u) = \mathsf{NLTV}(u) = \int_{\Omega} \left\| \nabla_{\omega} u(x) \right\|_{2} \, dx = \sup_{\xi \in \Xi} \left\{ \int_{\Omega} u \, \mathsf{div}_{\omega} \, \xi \, dx \right\},$$

where
$$\Xi = \{ \boldsymbol{\xi} \in C_c^1(\Omega \times \Omega, \boldsymbol{R}^M) : \| \boldsymbol{\xi}(\boldsymbol{x}, \cdot) \|_2 \le 1, \forall \boldsymbol{x} \in \Omega \}.$$

How can we generalize TV and NLTV to vector-valued images?

Classical approaches

Consider a vector-valued image $\mathbf{u}:\Omega\to \mathbf{R}^c$ with C spectral channels.

Classical approaches

Consider a vector-valued image $\mathbf{u}:\Omega\to \mathbf{\textit{R}}^c$ with C spectral channels.

• Channel-wise summation [Blomgren, Chan '98]:

$$VTV(\mathbf{u}) = \sum_{k=1}^{C} TV(u_k) = \sup_{(\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_C) \in \Xi} \left\{ \sum_{k=1}^{C} \int_{\Omega} u_k \operatorname{div} \boldsymbol{\xi}_k \, dx \right\},$$

where
$$\Xi = \left\{ oldsymbol{\xi} \in \mathit{C}^{1}_{c}(\Omega, \boldsymbol{\mathit{R}}^{\mathit{M}} \times \cdots \times \boldsymbol{\mathit{R}}^{\mathit{M}}) \, : \, \| oldsymbol{\xi}_{\mathit{k}}(x) \| \leq 1, \, \forall x \in \Omega, \, \forall \mathit{k} = 1, \ldots, \mathit{C} \right\}.$$

Classical approaches

Consider a vector-valued image $\mathbf{u}:\Omega\to \mathbf{\textit{R}}^c$ with \emph{C} spectral channels.

• Channel-wise summation [Blomgren, Chan '98]:

$$VTV(\mathbf{u}) = \sum_{k=1}^{C} TV(u_k) = \sup_{(\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_C) \in \Xi} \left\{ \sum_{k=1}^{C} \int_{\Omega} u_k \operatorname{div} \boldsymbol{\xi}_k \, dx \right\},$$

where $\Xi = \left\{ \boldsymbol{\xi} \in C^1_c(\Omega, \boldsymbol{R}^M \times \cdots \times \boldsymbol{R}^M) \; : \; \|\boldsymbol{\xi}_k(x)\| \leq 1, \; \forall x \in \Omega, \; \forall k = 1, \dots, C \right\}.$

Global channel coupling [Sapiro, Ringach '96]:

$$VTV(\mathbf{u}) = \int_{\Omega} \|\nabla \mathbf{u}\|_{F} dx = \sup_{\boldsymbol{\xi} = (\boldsymbol{\xi}_{1}, \dots, \boldsymbol{\xi}_{C}) \in \Xi} \left\{ \sum_{k=1}^{C} \int_{\Omega} u_{k} \operatorname{div} \boldsymbol{\xi}_{k} dx \right\},$$

where
$$\Xi = \{ \boldsymbol{\xi} \in C_c^1(\Omega, \boldsymbol{R}^{M \times C}) : \| \boldsymbol{\xi}(x) \| \le 1, \forall x \in \Omega \}.$$

Classical approaches

Consider a vector-valued image $\mathbf{u}:\Omega\to \mathbf{R}^c$ with C spectral channels.

• Channel-wise summation [Blomgren, Chan '98]:

$$\mathsf{VTV}(\mathbf{u}) = \sum_{k=1}^{C} \mathsf{TV}(u_k) = \sup_{(\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_C) \in \Xi} \left\{ \sum_{k=1}^{C} \int_{\Omega} u_k \, \mathsf{div} \, \boldsymbol{\xi}_k \, dx \right\},$$

where $\Xi = \{ \boldsymbol{\xi} \in C^1_c(\Omega, \boldsymbol{R}^M \times \cdots \times \boldsymbol{R}^M) : \| \boldsymbol{\xi}_k(\boldsymbol{x}) \| \leq 1, \ \forall \boldsymbol{x} \in \Omega, \ \forall k = 1, \dots, C \}.$

Global channel coupling [Sapiro, Ringach '96]:

$$VTV(\mathbf{u}) = \int_{\Omega} \|\nabla \mathbf{u}\|_{F} dx = \sup_{\boldsymbol{\xi} = (\boldsymbol{\xi}_{1}, \dots, \boldsymbol{\xi}_{C}) \in \Xi} \left\{ \sum_{k=1}^{C} \int_{\Omega} u_{k} \operatorname{div} \boldsymbol{\xi}_{k} dx \right\},$$

where $\Xi = \{ \boldsymbol{\xi} \in C_c^1(\Omega, \boldsymbol{R}^{M \times C}) : \| \boldsymbol{\xi}(x) \| < 1, \forall x \in \Omega \}.$

Spectral norm coupling [Goldluecke, Strekalovskiy, Cremers '12]:

$$\mathsf{VTV}(\mathbf{u}) = \int_{\Omega} \|\nabla \mathbf{u}\|_{\sigma_1} \, dx = \sup_{(\boldsymbol{\xi}, \boldsymbol{\eta}) \in \Xi} \left\{ \sum_{k=1}^{C} \int_{\Omega} u_k \, \mathsf{div} \left(\boldsymbol{\eta}_k \boldsymbol{\xi} \right) \, dx \right\},$$

where $\Xi = \{ \xi \in C_c^1(\Omega, \mathbb{R}^M), \eta \in C_c^1(\Omega, \mathbb{R}^C) : \|\xi(x)\| \le 1, \|\eta(x)\| \le 1, \forall x \in \Omega \}.$

Different edge direction Channel-by-channel weights

$$\int_{\Omega} \|\nabla \mathbf{u}\|_{\sigma_1} \, dx$$
 Common edge direction Channel-by-channel weights

Which is the best VTV for vector-valued images?

Collaborative Total Variation for Multi-Channel Images

Proposed framework

Represent an image u with N pixels and C spectral channels by the matrix

$$\mathbf{u} = (u_1, \ldots, u_C) \in \mathbf{R}^{N \times C}$$
 s.t. $u_k \in \mathbf{R}^N, \forall k \in \{1, \ldots, C\}.$

Collaborative Total Variation for Multi-Channel Images

Proposed framework

• Represent an image \mathbf{u} with N pixels and C spectral channels by the matrix

$$\mathbf{u} = (u_1, \ldots, u_C) \in \mathbf{R}^{N \times C}$$
 s.t. $u_k \in \mathbf{R}^N$, $\forall k \in \{1, \ldots, C\}$.

The Jacobi matrix at each pixel defines a 3D tensor given by

$$D\mathbf{u} \equiv (Du)_{i,j,k} \in \mathbf{R}^{N \times M \times C},$$

with M directional derivatives.

Collaborative Total Variation for Multi-Channel Images

Proposed framework

Represent an image u with N pixels and C spectral channels by the matrix

$$\mathbf{u} = (u_1, \ldots, u_C) \in \mathbf{R}^{N \times C}$$
 s.t. $u_k \in \mathbf{R}^N$, $\forall k \in \{1, \ldots, C\}$.

The Jacobi matrix at each pixel defines a 3D tensor given by

$$D\mathbf{u} \equiv (Du)_{i,j,k} \in \mathbf{R}^{N \times M \times C},$$

with M directional derivatives.

• Regularize Du by penalizing each dimension with a different norm.

Example (Local gradient operator)

Consider a color image $\mathbf{u} \in R^{N \times 3}$ and the local gradient computed at each pixel via forward differences. Then, the submatrix obtained by fixing the n-th pixel is

$$\left(\begin{array}{cccc} u_{n+1,1} - u_{n,1} & u_{n+1,2} - u_{n,2} & u_{n+1,3} - u_{n,3} \\ u_{n+N_w,1} - u_{n,1} & u_{n+N_w,2} - u_{n,2} & u_{n+N_w,3} - u_{n,3} \end{array} \right)$$

Example (Local gradient operator)

Consider a color image $\mathbf{u} \in \mathbb{R}^{N \times 3}$ and the local gradient computed at each pixel via forward differences. Then, the submatrix obtained by fixing the n-th pixel is

$$\left(\begin{array}{ccc} u_{n+1,1} - u_{n,1} & u_{n+1,2} - u_{n,2} & u_{n+1,3} - u_{n,3} \\ u_{n+N_w,1} - u_{n,1} & u_{n+N_w,2} - u_{n,2} & u_{n+N_w,3} - u_{n,3} \end{array} \right)$$

Example (Nonlocal gradient operator)

Consider a color image $\mathbf{u} \in \mathbf{R}^{4 \times 3}$ and compute the nonlocal gradient. If we fix the k-th channel, the submatrix along pixel and derivative dimensions is

$$\begin{pmatrix} 0 & \omega_{1,2} (u_{1,k} - u_{2,k}) & \omega_{1,3} (u_{1,k} - u_{3,k}) & \omega_{1,4} (u_{1,k} - u_{4,k}) \\ \omega_{2,1} (u_{2,k} - u_{1,k}) & 0 & \omega_{2,3} (u_{2,k} - u_{3,k}) & \omega_{2,4} (u_{2,k} - u_{4,k}) \\ \omega_{3,1} (u_{3,k} - u_{1,k}) & \omega_{3,2} (u_{3,k} - u_{2,k}) & 0 & \omega_{3,4} (u_{3,k} - u_{4,k}) \\ \omega_{4,1} (u_{4,k} - u_{1,k}) & \omega_{4,2} (u_{4,k} - u_{2,k}) & \omega_{4,3} (u_{4,k} - u_{3,k}) & 0 \end{pmatrix}$$

Example (Local gradient operator)

Consider a color image $\mathbf{u} \in \mathbb{R}^{N \times 3}$ and the local gradient computed at each pixel via forward differences. Then, the submatrix obtained by fixing the n-th pixel is

$$\begin{pmatrix} u_{n+1,1} - u_{n,1} & u_{n+1,2} - u_{n,2} & u_{n+1,3} - u_{n,3} \\ u_{n+N_w,1} - u_{n,1} & u_{n+N_w,2} - u_{n,2} & u_{n+N_w,3} - u_{n,3} \end{pmatrix}$$

Example (Nonlocal gradient operator)

Consider a color image $\mathbf{u} \in \mathbb{R}^{4 \times 3}$ and compute the nonlocal gradient. If we fix the k-thchannel, the submatrix along pixel and derivative dimensions is

$$\begin{pmatrix} 0 & \omega_{1,2} \left(u_{1,k} - u_{2,k} \right) & \omega_{1,3} \left(u_{1,k} - u_{3,k} \right) & \omega_{1,4} \left(u_{1,k} - u_{4,k} \right) \\ \omega_{2,1} \left(u_{2,k} - u_{1,k} \right) & 0 & \omega_{2,3} \left(u_{2,k} - u_{3,k} \right) & \omega_{2,4} \left(u_{2,k} - u_{4,k} \right) \\ \omega_{3,1} \left(u_{3,k} - u_{1,k} \right) & \omega_{3,2} \left(u_{3,k} - u_{2,k} \right) & 0 & \omega_{3,4} \left(u_{3,k} - u_{4,k} \right) \\ \omega_{4,1} \left(u_{4,k} - u_{1,k} \right) & \omega_{4,2} \left(u_{4,k} - u_{2,k} \right) & \omega_{4,3} \left(u_{4,k} - u_{3,k} \right) & 0 \end{pmatrix}$$

• In general, the nonlocal 3D tensor is of size $N \times N \times C$. However, ω is usually sparse.

Example (Local gradient operator)

Consider a color image $\mathbf{u} \in \mathbb{R}^{N \times 3}$ and the local gradient computed at each pixel via forward differences. Then, the submatrix obtained by fixing the n-th pixel is

$$\begin{pmatrix}
u_{n+1,1} - u_{n,1} & u_{n+1,2} - u_{n,2} & u_{n+1,3} - u_{n,3} \\
u_{n+N_{w},1} - u_{n,1} & u_{n+N_{w},2} - u_{n,2} & u_{n+N_{w},3} - u_{n,3}
\end{pmatrix}$$

Example (Nonlocal gradient operator)

Consider a color image $\mathbf{u} \in \mathbf{R}^{4 \times 3}$ and compute the nonlocal gradient. If we fix the k-th channel, the submatrix along pixel and derivative dimensions is

$$\begin{pmatrix} 0 & \omega_{1,2} \left(u_{1,k} - u_{2,k} \right) & \omega_{1,3} \left(u_{1,k} - u_{3,k} \right) & \omega_{1,4} \left(u_{1,k} - u_{4,k} \right) \\ \omega_{2,1} \left(u_{2,k} - u_{1,k} \right) & 0 & \omega_{2,3} \left(u_{2,k} - u_{3,k} \right) & \omega_{2,4} \left(u_{2,k} - u_{4,k} \right) \\ \omega_{3,1} \left(u_{3,k} - u_{1,k} \right) & \omega_{3,2} \left(u_{3,k} - u_{2,k} \right) & 0 & \omega_{3,4} \left(u_{3,k} - u_{4,k} \right) \\ \omega_{4,1} \left(u_{4,k} - u_{1,k} \right) & \omega_{4,2} \left(u_{4,k} - u_{2,k} \right) & \omega_{4,3} \left(u_{4,k} - u_{3,k} \right) & 0 \end{pmatrix}$$

- In general, the nonlocal 3D tensor is of size $N \times N \times C$. However, ω is usually sparse.
- Local gradient is a particular case of the nonlocal gradient by taking

$$\omega_{i,j} = \begin{cases} 1 & \text{if } j \text{ is the right or lower neighbour of } i, \\ 0 & \text{otherwise.} \end{cases}$$

Collaborative sparsity enforcing norms

• The Jacobi matrix at each pixel defines a 3D tensor which can be regularized by penalizing each of its dimensions with a different norm.

Collaborative sparsity enforcing norms

 The Jacobi matrix at each pixel defines a 3D tensor which can be regularized by penalizing each of its dimensions with a different norm.

Definition

Let $\|\cdot\|_a: R^N \to R$ be any vector norm and $\|\cdot\|_{\vec{b}}: R^{M \times C} \to R$ any matrix norm. Then, the collaborative norm of $A \in R^{N \times M \times C}$ is defined as

$$||A||_{\vec{b},a} = ||v||_a$$
, with $v_i = ||A_{i,:,:}||_{\vec{b}}$, $\forall i \in \{1,...,N\}$,

where $A_{i,...}$ is the submatrix obtained by stacking the second and third dimensions of A at ith position.

Collaborative sparsity enforcing norms

 The Jacobi matrix at each pixel defines a 3D tensor which can be regularized by penalizing each of its dimensions with a different norm.

Definition

Let $\|\cdot\|_a: R^N \to R$ be any vector norm and $\|\cdot\|_{\vec{b}}: R^{M \times C} \to R$ any matrix norm. Then, the collaborative norm of $A \in \mathbb{R}^{N \times M \times C}$ is defined as

$$\|A\|_{\vec{b},a} = \|v\|_a$$
, with $v_i = \|A_{i,:,:}\|_{\vec{b}}$, $\forall i \in \{1,\dots,N\}$,

where $A_{i,...}$ is the submatrix obtained by stacking the second and third dimensions of A at ith position.

Example ($\ell^{p,q,r}$ norms)

Let $A \in \mathbb{R}^{N \times M \times C}$ and consider $\|\cdot\|_{\vec{b}} = \ell^{p,q}$ and $\|\cdot\|_{a} = \ell^{r}$. Then, the $\ell^{p,q,r}$ norm is

$$||A||_{\rho,q,r} = \left(\sum_{i=1}^{N} \left(\sum_{j=1}^{M} \left(\sum_{k=1}^{C} |A_{i,j,k}|^{\rho}\right)^{q/\rho}\right)^{r/q}\right)^{1/r}$$

Example $((S^p, \ell^q) \text{ norm})$

Let $A \in \mathbb{R}^{N \times M \times C}$ and consider $\|\cdot\|_{\vec{b}} = S^p$ and $\|\cdot\|_a = \ell^q$. Then the (S^p, ℓ^q) norm is

$$(S^p,\ell^q)(A) = \left(\sum_{i=1}^N \left\| \left(egin{array}{ccc} A_{i,1,1} & \cdots & A_{i,1,C} \ dots & \ddots & dots \ A_{i,M,1} & \cdots & A_{i,M,C} \end{array}
ight)
ight\|_{S^p}^q
ight)^{1/c}$$

- Schatten p—norms:
 - Fix a pixel location and consider the submatrix obtained by looking at the channel and derivative dimensions.
 - Compute SVD and penalize the singular values with an ℓ^p -norm:
 - $p=1 \rightarrow$ nuclear norm, a convex relaxation of rank minimization.
 - $p = 2 \rightarrow$ Frobenius norm.
 - $p = \infty$ \rightarrow penalizing the largest singular value.

Example $((S^p, \ell^q) \text{ norm})$

Let $A \in R^{N \times M \times C}$ and consider $\|\cdot\|_{\vec{b}} = S^p$ and $\|\cdot\|_a = \ell^q$. Then the (S^p, ℓ^q) norm is

$$(S^p,\ell^q)(A) = \left(\sum_{i=1}^N \left\| \left(egin{array}{ccc} A_{i,1,1} & \cdots & A_{i,1,C} \ dots & \ddots & dots \ A_{i,M,1} & \cdots & A_{i,M,C} \end{array}
ight)
ight\|_{S^p}^q
ight)^{1/q}$$

- Schatten *p*—norms:
 - Fix a pixel location and consider the submatrix obtained by looking at the channel and derivative dimensions.
 - Compute SVD and penalize the singular values with an ℓ^p -norm:
 - $p=1 \rightarrow$ nuclear norm, a convex relaxation of rank minimization.
 - $p = 2 \rightarrow$ Frobenius norm.
 - $p = \infty$ \rightarrow penalizing the largest singular value.
- CTV norms are non invariant to permutations of the dimensions:

$$\ell^{p,q,r}(col, der, pix)$$
 and $(S^p(col, der), \ell^q(pix))$

Example $((S^p, \ell^q) \text{ norm})$

Let $A \in \mathbb{R}^{N \times M \times C}$ and consider $\|\cdot\|_{\vec{b}} = S^p$ and $\|\cdot\|_a = \ell^q$. Then the (S^p, ℓ^q) norm is

$$(S^p,\ell^q)(A) = \left(\sum_{i=1}^N \left\| \left(egin{array}{ccc} A_{i,1,1} & \cdots & A_{i,1,C} \ dots & \ddots & dots \ A_{i,M,1} & \cdots & A_{i,M,C} \end{array}
ight)
ight\|_{S^p}^q
ight)^{1/q}$$

- Schatten p—norms:
 - Fix a pixel location and consider the submatrix obtained by looking at the channel and derivative dimensions.
 - Compute SVD and penalize the singular values with an ℓ^p -norm:
 - $p=1
 ightarrow {
 m nuclear}$ norm, a convex relaxation of rank minimization.
 - $p = 2 \rightarrow$ Frobenius norm.
 - $p = \infty$ \rightarrow penalizing the largest singular value.
- CTV norms are non invariant to permutations of the dimensions:

$$\ell^{p,q,r}(col, der, pix)$$
 and $(S^p(col, der), \ell^q(pix))$

 Any transform along each of the dimensions, in particular, color space transforms, can be applied before CTV.

A unified framework for Vectorial Total Variation

Continuous Formulation	Our Framework
$\int_{\Omega} \sum_{k=1}^{C} \sqrt{(\partial_{x_1} u_k(x))^2 + (\partial_{x_2} u_k(x))^2} dx$	$\ell^{2,1,1}(der,col,pix)$
$\int_{\Omega} \sum_{k=1}^{C} (\partial_{x_1} u_k(x) + \partial_{x_2} u_k(x)) dx$	$\ell^{1,1,1}(\mathit{der},\mathit{col},\mathit{pix})$
$\sqrt{\sum_{k=1}^{C} \left(\int_{\Omega} \sqrt{(\partial_{x_1} u_k(x))^2 + (\partial_{x_2} u_k(x))^2} dx \right)^2}$	$\ell^{2,1,2}(\mathit{der},\mathit{pix},\mathit{col})$
$\sqrt{\sum_{k=1}^{C} \left(\int_{\Omega} \left(\partial_{x_1} u_k(x) + \partial_{x_2} u_k(x) \right) dx \right)^2}$	$\ell^{1,1,2}(\mathit{der},\mathit{pix},\mathit{col})$
$\int_{\Omega} \sqrt{\sum_{k=1}^{C} \left(\partial_{x_1} u_k(x)\right)^2 + \sum_{k=1}^{C} \left(\partial_{x_2} u_k(x)\right)^2} dx$	$\ell^{2,2,1}(\mathit{col},\mathit{der},\mathit{pix})$
$\int_{\Omega} \sqrt{\sum_{k=1}^{C} \left(\partial_{x_1} u_k(x) + \partial_{x_2} u_k(x) \right)^2} dx$	$\ell^{1,2,1}(\mathit{der},\mathit{col},\mathit{pix})$
$\int_{\Omega} \left(\sqrt{\sum_{k=1}^{C} \left(\partial_{x_1} u_k(x) \right)^2} + \sqrt{\sum_{k=1}^{C} \left(\partial_{x_2} u_k(x) \right)^2} \right) dx$	$\ell^{2,1,1}(col, der, pix)$
$\int_{\Omega} \left(\max_{1 \le k \le C} \partial_{x_1} u_k(x) + \max_{1 \le k \le C} \partial_{x_2} u_k(x) \right) dx$	$\ell^{\infty,1,1}(\mathit{col},\mathit{der},\mathit{pix})$

Continuous Formulation	Our Framework
$\int_{\Omega} \sqrt{\left(\max_{1\leq k\leq C} \partial_{x_1} u_k(x) \right)^2 + \left(\max_{1\leq k\leq C} \partial_{x_2} u_k(x) \right)^2} dx$	$\ell^{\infty,2,1}(\mathit{col},\mathit{der},\mathit{pix})$
$\int_{\Omega} \max_{1 \le k \le C} \sqrt{\left(\partial_{x_1} u_k(x)\right)^2 + \left(\partial_{x_2} u_k(x)\right)^2} dx$	$\ell^{2,\infty,1}(\mathit{der},\mathit{col},\mathit{pix})$
$\int_{\Omega} \max \left\{ \max_{1 \le k \le C} \partial_{x_1} u_k(x) , \max_{1 \le k \le C} \partial_{x_2} u_k(x) \right\} dx$	$\ell^{\infty,\infty,1}({\it col},{\it der},{\it pix})$
$\int_{\Omega} \left(\sqrt{\lambda^{+}(x)} + \sqrt{\lambda^{-}(x)} \right) dx$	$(S^1(\mathit{col},\mathit{der}),\ell^1(\mathit{pix}))$
$\int_{\Omega} \sqrt{\lambda^{+}(x)} dx$	$(S^{\infty}(col, der), \ell^{1}(pix))$
$\int_{\Omega} \left(\sum_{k=1}^{C} \sqrt{\int_{\Omega} (u_k(y) - u_k(x))^2 \omega(x, y) dy} \right) dx$	$\ell^{2,1,1}_{\omega}(extit{der}, extit{col}, extit{pix})$
$\int_{\Omega} \left(\sum_{k=1}^{C} \int_{\Omega} u(y) - u(x) \sqrt{\omega(x,y)} dy \right) dx$	$\ell^{1,1,1}_{\omega}(extit{der}, extit{col}, extit{pix})$
$\sqrt{\sum_{k=1}^{C} \left(\int_{\Omega} \sqrt{\int_{\Omega} (u_k(y) - u_k(x))^2 \omega(x, y) dy} dx \right)^2}$	$\ell^{2,1,2}_{\omega}(\mathit{der},\mathit{pix},\mathit{col})$
$\int_{\Omega} \int_{\Omega} \sqrt{\sum_{k=1}^{C} (u_k(y) - u_k(x))^2 \omega(x, y)} dy dx$	$\ell^{2,1,1}_{\omega}({\it col},{\it der},{\it pix})$
$\int_{\Omega} \sqrt{\int_{\Omega} \sum_{k=1}^{C} (u_k(y) - u_k(x))^2 \omega(x, y) dy} dx$	$\ell^{2,2,1}_{\omega}(\mathit{col},\mathit{der},\mathit{pix})$
$\int_{\Omega} \int_{\Omega} \max_{1 \leq k \leq C} \left((u_k(y) - u_k(x))^2 \omega(x, y) \right) dy dx$	$\ell_{\omega}^{\infty,1,1}(\mathit{col},\mathit{der},\mathit{pix})$

Inter-channel correlation

Singular vector analysis

Definition

Let F be a convex regularization s.t. $\partial F(\mathbf{u}) \neq \emptyset$ at any $\mathbf{u} \in \text{dom}\, F$. Then, every function \mathbf{u}_{λ} s.t. $\|\mathbf{u}_{\lambda}\| = 1$ and $\lambda \mathbf{u}_{\lambda} \in \partial F(\mathbf{u}_{\lambda})$ is called a singular vector of F with singular value λ .

Singular vector analysis

Definition

Let F be a convex regularization s.t. $\partial F(\mathbf{u}) \neq \emptyset$ at any $\mathbf{u} \in \text{dom}\, F$. Then, every function \mathbf{u}_{λ} s.t. $\|\mathbf{u}_{\lambda}\| = 1$ and $\lambda \mathbf{u}_{\lambda} \in \partial F(\mathbf{u}_{\lambda})$ is called a singular vector of F with singular value λ .

• A signal can be restored well if it is a singular vector of F [Benning, Burger '13].

Singular vector analysis

Definition

Let F be a convex regularization s.t. $\partial F(\mathbf{u}) \neq \emptyset$ at any $\mathbf{u} \in \text{dom}\, F$. Then, every function \mathbf{u}_{λ} s.t. $\|\mathbf{u}_{\lambda}\| = 1$ and $\lambda \mathbf{u}_{\lambda} \in \partial F(\mathbf{u}_{\lambda})$ is called a singular vector of F with singular value λ .

- A signal can be restored well if it is a singular vector of F [Benning, Burger '13].
- Singular vectors of CTV:

$$\mathbf{u} \in \partial \|D\mathbf{u}\|_{\vec{b},a} \Leftrightarrow \mathbf{u} = D^{\top}\mathbf{z}, \text{ with } \mathbf{z} \in \partial_{D\mathbf{u}}(\|D\mathbf{u}\|_{\vec{b},a}).$$

The functions whose divergence generates singular vectors reduce to

$$z_k^1(x_1, x_2) = c_k^1 l_k^1(x_1)$$
 and $z_k^2(x_1, x_2) = c_k^2 l_k^2(x_2)$,

where $c_k^r \in \mathbb{R}$, $|l_k^r(x)| \leq 1$, l_k^r piecewise linear and linearity changes iff $|l_k^r(x)| = 1$.

CTV	Singular Vectors	Properties
$\ell^{1,1,1}$	$u_k(x_1, x_2) = -c_k^1 D_1 I_k^1(x_1) - c_k^2 D_2 I_k^2(x_2)$	I_{k}^{r} depend on k and $c_{k}^{r} \in \{0,\pm 1\}$
$\ell^{2,1,1}$	$u_k(x_1, x_2) = -c_k^1 D_1 I^1(x_1) - c_k^2 D_2 I^2(x_2)$	I^r do not depend on k and $\ c^r\ _2=1$
$\ell^{\infty,1,1}$	$u_k(x_1, x_2) = -c_k^1 D_1 I^1(x_1) - c_k^2 D_2 I^2(x_2)$	I^r do not depend on k and $c_k^r \in \{0,\pm 1\}$

CTV	Singular Vectors	Properties
$\ell^{1,1,1}$	$u_k(x_1, x_2) = -c_k^1 D_1 I_k^1(x_1) - c_k^2 D_2 I_k^2(x_2)$	I_{k}^{r} depend on k and $c_{k}^{r} \in \{0,\pm 1\}$
$\ell^{2,1,1}$	$u_k(x_1,x_2) = -c_k^1 D_1 I^1(x_1) - c_k^2 D_2 I^2(x_2)$	I^r do not depend on k and $\ c^r\ _2=1$
$\ell^{\infty,1,1}$	$u_k(x_1, x_2) = -c_k^1 D_1 I^1(x_1) - c_k^2 D_2 I^2(x_2)$	I^r do not depend on k and $c_k^r \in \{0,\pm 1\}$

The ℓ^{∞} norm introduces the strongest channel coupling!

Minimization using the Primal-Dual Algoritm

• Primal formulation:

$$\min_{\mathbf{u} \in R^{N \times C}} F(\mathbf{u}) + G(\mathbf{u}) = \|D\mathbf{u}\|_{\vec{b},a} + G(\mathbf{u}).$$

Minimization using the Primal-Dual Algoritm

Primal formulation:

$$\min_{\mathbf{u} \in R^{N \times C}} F(\mathbf{u}) + G(\mathbf{u}) = \|D\mathbf{u}\|_{\vec{b},a} + G(\mathbf{u}).$$

• Since F is closed and l.s.c., then

$$F(D\mathbf{u}) = F^{**}(D\mathbf{u}) = \sup_{\mathbf{p} \in R^{N \times M \times C}} \langle D\mathbf{u}, \mathbf{p} \rangle - F^{*}(\mathbf{p}).$$

Minimization using the Primal-Dual Algoritm

Primal formulation:

$$\min_{\mathbf{u} \in R^{N \times C}} F(\mathbf{u}) + G(\mathbf{u}) = \|D\mathbf{u}\|_{\vec{b},a} + G(\mathbf{u}).$$

• Since F is closed and l.s.c., then

$$F(D\mathbf{u}) = F^{**}(D\mathbf{u}) = \sup_{\mathbf{p} \in R^{N \times M \times C}} \langle D\mathbf{u}, \mathbf{p} \rangle - F^{*}(\mathbf{p}).$$

• If $F = \|\cdot\|$, then its Legendre-Fenchel transform is the indicator function of the unit dual norm ball:

$$F^*\left(\mathbf{p}\right) = \left\{ \begin{array}{ll} 0 & \text{if } \|\mathbf{p}\|_{\vec{b}^*,a*} \leq 1, \\ +\infty & \text{otherwise.} \end{array} \right\} = \mathcal{X}_{\|\cdot\|_{\vec{b}^*,a*} \leq 1}\left(\mathbf{p}\right).$$

Theorem

Let $\|\cdot\|_{\vec{b}^*}$ and $\|\cdot\|_{a^*}$ be the dual norms to $\|\cdot\|_{\vec{b}}$ and $\|\cdot\|_a$, respectively. Consider $A \in \mathbb{R}^{N \times M \times C}$ and define $v \in \mathbb{R}^N$ such that $v_i = ||A_{i,...}||_{\vec{h}^*}$ for each $i \in \{1,...,N\}$. If $\|v\|_{a^*}$ only depends on the absolute values of $v_i's$, then the dual norm to $\|\cdot\|_{\vec{b},a}$ is

$$||A||_{\vec{b}^*,a^*} = ||v||_{a^*}, \quad with \quad v_i = ||A_{i,:,:}||_{\vec{b}^*}, \ \forall i \in \{1,\ldots,N\}.$$

• Saddle-point formulation:

$$\min_{\mathbf{u} \in R^{N \times C}} \max_{\mathbf{p} \in R^{N \times M \times C}} \langle D\mathbf{u}, \mathbf{p} \rangle - F^*(\mathbf{p}) + G(\mathbf{u}),$$

with optimality conditions

$$0 \in \partial \textit{G}\left(\widehat{\textbf{u}}\right) + \textit{D}^{\top}\widehat{\textbf{p}} \text{ and } 0 \in \partial \textit{F}^{*}\left(\widehat{\textbf{p}}\right) - \textit{D}\widehat{\textbf{u}}.$$

Saddle-point formulation:

$$\min_{\mathbf{u} \in R^{N \times C}} \max_{\mathbf{p} \in R^{N \times M \times C}} \langle D\mathbf{u}, \mathbf{p} \rangle - F^*(\mathbf{p}) + G(\mathbf{u}),$$

with optimality conditions

$$0 \in \partial G(\widehat{\mathbf{u}}) + D^{\top}\widehat{\mathbf{p}} \text{ and } 0 \in \partial F^{*}(\widehat{\mathbf{p}}) - D\widehat{\mathbf{u}}.$$

Primal-Dual algorithm [Chambolle, Pock '11]:

$$\begin{split} \mathbf{u}^{n+1} &= \mathsf{prox}_{\tau_n G} \left(\mathbf{u}^n - \tau_n D^\top \mathbf{p}^n \right) & \leftarrow & \mathsf{Gradient \ descent \ step \ in \ } \mathbf{u} \\ \mathbf{\bar{u}}^{n+1} &= \mathbf{u}^{n+1} + \left(\mathbf{u}^{n+1} - \mathbf{u}^n \right), & \leftarrow & \mathsf{Over-relaxation \ step \ in \ } \mathbf{u} \\ \mathbf{p}^{n+1} &= \mathsf{prox}_{\sigma_n F^*} \left(\mathbf{p}^n + \sigma_n D \mathbf{\bar{u}}^{n+1} \right) & \leftarrow & \mathsf{Gradient \ ascent \ step \ in \ } \mathbf{p} \end{split}$$

where $\tau_n, \sigma_n > 0$ are adaptive step-size parameters and

$$\operatorname{prox}_{\alpha f}(x) = \arg \min_{y} \left\{ \frac{1}{2\alpha} \|y - x\|_{2}^{2} + f(y) \right\}.$$

Saddle-point formulation:

$$\min_{\mathbf{u} \in R^{N \times C}} \max_{\mathbf{p} \in R^{N \times M \times C}} \langle D\mathbf{u}, \mathbf{p} \rangle - F^* \left(\mathbf{p} \right) + G \left(\mathbf{u} \right),$$

with optimality conditions

$$\mathbf{0} \in \partial \textit{G}\left(\widehat{\mathbf{u}}\right) + \textit{D}^{\top}\widehat{\mathbf{p}} \text{ and } \mathbf{0} \in \partial \textit{F}^{*}\left(\widehat{\mathbf{p}}\right) - \textit{D}\widehat{\mathbf{u}}.$$

Primal-Dual algorithm [Chambolle, Pock '11]:

$$\begin{split} \mathbf{u}^{n+1} &= \mathsf{prox}_{\tau_n \mathcal{G}} \left(\mathbf{u}^n - \tau_n D^\top \mathbf{p}^n \right) & \leftarrow & \mathsf{Gradient \ descent \ step \ in \ } \mathbf{u} \\ \mathbf{\bar{u}}^{n+1} &= \mathbf{u}^{n+1} + \left(\mathbf{u}^{n+1} - \mathbf{u}^n \right), & \leftarrow & \mathsf{Over-relaxation \ step \ in \ } \mathbf{u} \\ \mathbf{p}^{n+1} &= \mathsf{prox}_{\sigma_n \mathcal{F}^*} \left(\mathbf{p}^n + \sigma_n D \mathbf{\bar{u}}^{n+1} \right) & \leftarrow & \mathsf{Gradient \ ascent \ step \ in \ } \mathbf{p} \end{split}$$

where $\tau_n, \sigma_n > 0$ are adaptive step-size parameters and

$$\operatorname{prox}_{\alpha f}(x) = \arg \min_{y} \left\{ \frac{1}{2\alpha} \|y - x\|_{2}^{2} + f(y) \right\}.$$

• The proximity operator of $F^*=\mathcal{X}_{\|\cdot\|_{\vec{P}^*.a_*}\leq 1}$ is the projection onto the unit dual norm ball

$$\widetilde{\mathbf{p}} = \operatorname{prox}_{\sigma F^*} (\mathbf{p}) = \operatorname{proj}_{\|\cdot\|_{\vec{h}^*} \to s} \leq 1}(\mathbf{p}).$$

Noisy ($\sigma = 30$)

 $\ell^{1,1,1}(col, der, pix)$

Image denoising

Noisy ($\sigma = 30$)

 $(S^{\infty}(col, der), \ell^{1}(pix))$

Noisy ($\sigma = 30$)

 $\ell^{2,1,1}(col, der, pix)$

Noisy ($\sigma = 30$)

 $(S^1(col, der), \ell^1(pix))$

Behaviour of CTV methods w.r.t. changing regularization parameter

Image denoising on Kodak dataset

	Noisy	$\ell^{1,1,1}$	$\ell^{2,1,1}$	$\ell^{2,2,1}$	$\ell^{\infty,1,1}$	$\ell^{\infty,2,1}$	$\ell^{\infty,\infty,1}$	$\ell^{2,\infty,1}$	\mathcal{S}^1, ℓ^1	$\mathcal{S}^{\infty},\ell^1$
1	24.78	28.14	29.07	28.51	29.90	29.19	28.60	29.07	29.20	27.96
2	24.76	28.54	29.48	29.22	30.18	29.87	29.36	29.66	29.83	28.62
3	24.80	29.20	30.15	29.81	30.85	30.51	29.84	30.25	30.33	29.24
4	24.68	30.92	32.22	31.80	32.73	32.71	31.54	32.13	32.32	31.01
5	24.71	31.50	32.75	32.41	33.13	33.30	32.10	32.64	32.81	31.65
6	24.72	27.36	28.19	27.98	29.01	28.64	28.29	28.52	28.59	27.47
7	24.71	29.46	30.39	30.12	30.86	30.71	29.99	30.35	30.57	29.53
8	24.96	31.08	32.10	31.84	32.41	32.40	31.62	32.02	32.20	31.22
9	25.68	30.92	31.74	31.54	32.10	32.00	31.49	31.78	31.85	31.11
10	24.66	29.75	30.81	30.49	31.48	31.29	30.52	30.94	31.05	29.84
11	24.66	30.14	31.10	30.84	31.49	31.46	30.68	31.07	31.22	30.25
12	24.71	31.85	33.15	32.84	33.45	33.69	32.47	33.03	33.25	32.05
	24.82	29.91	30.93	30.62	31.47	31.31	30.54	30.96	31.10	30.00

Image denoising on BSDS dataset

	Noisy	$\ell^{1,1,1}$	$\ell^{2,1,1}$	$\ell^{2,2,1}$	$\ell^{\infty,1,1}$	$\ell^{\infty,2,1}$	$\ell^{\infty,\infty,1}$	$\ell^{2,\infty,1}$	$\left(\mathcal{S}^1,\ell^1 ight)$	$\left(\mathcal{S}^{\infty},\ell^{1} ight)$
1	24.88	29.70	30.56	30.41	30.82	30.72	30.17	30.46	30.80	29.85
2	25.02	30.01	30.98	30.52	31.54	31.03	30.44	30.87	31.12	29.95
3	25.04	30.26	31.03	30.86	31.43	31.26	30.78	31.04	31.24	30.41
4	24.96	32.59	33.73	33.66	33.99	34.01	33.36	33.72	34.00	32.93
5	24.72	30.16	30.88	30.75	31.18	31.07	30.62	30.87	31.01	30.32
6	25.03	29.24	30.19	29.77	30.89	30.36	29.84	30.22	30.37	29.27
7	24.65	29.12	30.11	29.74	30.88	30.44	29.81	30.22	30.32	29.15
8	24.71	30.57	31.62	31.51	32.11	32.09	31.44	31.75	31.92	30.82
9	24.70	31.05	31.94	31.75	32.11	32.01	31.32	31.69	32.04	31.20
10	25.42	31.19	31.93	31.87	31.90	31.86	31.34	31.57	32.10	31.37
11	24.72	28.06	29.06	28.92	30.02	29.69	29.48	29.60	29.64	28.36
12	24.64	30.82	31.86	31.58	32.19	31.97	31.20	31.67	32.03	30.89
	24.87	30.23	31.16	30.95	31.59	31.38	30.82	31.14	31.38	30.38

Image denoising on McMaster dataset

	Noisy	$\ell^{1,1,1}$	$\ell^{2,1,1}$	$\ell^{2,2,1}$	$\ell^{\infty,1,1}$	$\ell^{\infty,2,1}$	$\ell^{\infty,\infty,1}$	$\ell^{2,\infty,1}$	S^1, ℓ^1	$\mathcal{S}^{\infty},\ell^1$
1	25.32	29.29	29.83	29.64	29.74	29.52	28.97	29.25	29.98	29.16
2	24.90	27.80	28.41	28.26	28.43	28.32	27.80	28.02	28.60	27.75
3	25.46	30.44	30.96	30.84	30.78	30.66	30.16	30.39	31.17	30.33
4	25.14	29.26	29.91	29.75	29.95	29.82	29.30	29.54	30.13	29.22
5	25.62	31.11	31.46	31.40	30.97	30.84	30.33	30.55	31.64	30.89
6	25.01	29.83	30.49	30.32	30.34	30.13	29.55	29.84	30.74	29.68
7	25.21	30.96	31.63	31.48	31.41	31.21	30.66	30.98	31.80	30.87
8	25.34	31.98	32.72	32.60	32.50	32.30	31.78	32.15	32.88	31.99
9	25.21	32.54	33.36	33.32	33.08	32.93	32.50	32.85	33.53	32.70
10	24.69	32.26	33.06	33.02	32.70	32.54	32.10	32.49	33.20	32.37
11	25.55	30.21	30.85	30.75	30.87	30.73	30.35	30.59	30.98	30.29
12	25.21	30.58	31.18	30.99	31.11	30.87	30.36	30.69	31.30	30.50
	25.22	30.52	31.16	31.03	30.99	30.82	30.32	30.61	31.33	30.48

Image denoising on ARRI dataset

	Noisy	$\ell^{1,1,1}$	$\ell^{2,1,1}$	$\ell^{2,2,1}$	$\ell^{\infty,1,1}$	$\ell^{\infty,2,1}$	$\ell^{\infty,\infty,1}$	$\ell^{2,\infty,1}$	$\left(\mathcal{S}^1,\ell^1 ight)$	$\left(\mathcal{S}^{\infty},\ell^{1} ight)$
1	24.85	30.93	31.79	31.61	31.94	31.79	31.29	31.63	31.90	31.03
2	24.79	33.26	34.42	34.06	34.55	34.40	33.54	34.08	34.43	33.33
3	24.84	33.89	34.81	34.83	34.94	35.23	34.69	34.89	34.99	34.33
4	25.23	34.61	35.40	35.40	35.43	35.59	35.16	35.37	35.49	35.01
5	24.66	33.43	34.18	34.12	34.13	34.24	33.76	34.04	34.20	33.70
6	24.74	29.33	30.23	30.11	30.35	30.27	29.80	30.10	30.46	29.53
7	25.21	33.17	33.81	33.68	33.56	33.50	32.95	33.28	33.81	33.25
8	24.65	31.30	32.19	31.82	32.36	31.95	31.25	31.75	32.18	31.18
	24.87	32.49	33.35	33.20	33.41	33.37	32.81	33.14	33.43	32.67

Image denoising: local vs nonlocal CTV

Image denoising: local vs nonlocal CTV

Noisy

 $\ell^{1,1,1} - \mathsf{NLTV}, \, \mathsf{PSNR} = 35.41$

Noisy ($\sigma = 30$)

 $\ell^{1,1,1}(col, der, pix)$

Noisy ($\sigma = 30$)

 $(S^{\infty}(col, der), \ell^{1}(pix))$

Noisy ($\sigma = 30$)

 $\ell^{2,\infty,1}(der,col,pix)$

Noisy ($\sigma = 30$)

 $\ell^{2,1,1}(col, der, pix)$

Noisy ($\sigma = 30$)

 $\left(S^1(\mathit{col},\mathit{der}),\ell^1(\mathit{pix})\right)$

Noisy ($\sigma = 30$)

 $\ell^{\infty,1,1}(col, der, pix)$

Video super-resolution

Bicubic interpolation

Upsampled stage

 ${\sf Upsampled} + {\sf deblurred} \; {\sf stage}$

Reference

Bicubic interpolation

Dong et al. '16

Unger et al. '11

Liao et al. '15

Ours

Hyperspectral data fusion

Spectral super-resolution

Light-field imaging

Image

Estimated depth

Conclusions

- We introduced a unified framework for Vectorial Total Variation based on the collaborative enforcing norms $\ell^{p,q,r}$ and (S^p,ℓ^q) .
- Depending on the amount of inter-channel correlation, different collaborative norms are suited.
- ullet $\ell^{\infty,1,1}$ and (S^1,ℓ^1) best exploit inter-channel correlations.
- We proposed respective Nonlocal Collaborative TV.
- We proposed the primal-dual algorithm to solve the minimization problem.

Conclusions

- We introduced a unified framework for Vectorial Total Variation based on the collaborative enforcing norms $\ell^{p,q,r}$ and (S^p,ℓ^q) .
- Depending on the amount of inter-channel correlation, different collaborative norms are suited.
- $\ell^{\infty,1,1}$ and (S^1,ℓ^1) best exploit inter-channel correlations.
- We proposed respective Nonlocal Collaborative TV.
- We proposed the primal-dual algorithm to solve the minimization problem.

References

- D., Moeller, Sbert, Cremers, "Collaborative Total Variation: A General Framework for Vectorial TV Models". SIAM-IS. 2016.
- D., Moeller, Sbert, Cremers, "On the Implementation of Collaborative TV Regularization: Application to Cartoon + Texture Decomposition", IPOL, 2016.
- D., Moeller, Sbert, Cremers, "A Novel Framework for Nonlocal Vectorial Total Variation Based on $\ell^{p,q,r}$ -Norms". Proc. EMMCVPR. 2015.

Collaborative Regularization Approaches in Multi-Channel Variational Imaging

Joan Duran¹

¹Dept. Mathematics and Computer Science Universitat de les Illes Balears, Mallorca, Spain

Joint work with

Michael Moeller², Daniel Cremers³, Catalina Sbert¹ and Antoni Buades¹

²Inst. Vision and Graphics University of Siegen, Germany ³Dept. Computer Science Technical University of Munich, Germany

February 1st, 2018

Proximity operator of $\ell^{p,q,r}$ norms

• $\ell^{1,1,1}$ - norm:

$$\left(\mathsf{prox}_{\frac{1}{\sigma}\|\cdot\|_{1,1,1}}(A)\right)_{i,j,k} = \mathsf{max}\left(|A_{i,j,k}| - \frac{1}{\sigma}, 0\right)\mathsf{sign}\big(A_{i,j,k}\big).$$

• $\ell^{2,1,1}$ – norm:

$$\left(\mathsf{prox}_{\frac{1}{\sigma} \| \cdot \|_{2,1,1}} (A) \right)_{i,j,k} = \mathsf{max} \left(\| A_{i,j,:} \|_2 - \frac{1}{\sigma}, 0 \right) \frac{A_{i,j,k}}{\| A_{i,j,:} \|_2}.$$

• $\ell^{2,2,1}$ -norm:

$$\left(\mathsf{prox}_{\frac{1}{\sigma}\|\cdot\|_{2,2,1}}(A)\right)_{i,j,k} = \mathsf{max}\left(\|A_{i,:,:}\|_{2,2} - \frac{1}{\sigma}, 0\right) \frac{A_{i,j,k}}{\|A_{i,:,:}\|_{2,2}}.$$

• $\ell^{\infty,1,1}$ -norm decouples at each j and k so we are left with an ℓ^{∞} problem computed by means of the projection onto unit ℓ^1 dual ball:

$$\left(\mathsf{prox}_{\frac{1}{\sigma}\|\cdot\|_{\infty,1,1}}(A)\right)_{i,j,k} = A_{i,j,k} - \frac{1}{\sigma}\mathsf{sign}\left(A_{i,j,k}\right)\left(\mathsf{proj}_{\|\cdot\|_1 \le 1}\left(\sigma|A_{i,j,\cdot}|\right)\right)_{i,j,k},$$

where $A_{i,j,:}$ denotes the vector obtained by staking third dimension.

• $\ell^{\infty,\infty,1}$ -norm:

$$\left(\mathsf{prox}_{\frac{1}{\sigma}\|\cdot\|_{\infty,\infty,1}}(A)\right)_{i,j,k} = A_{i,j,k} - \frac{1}{\sigma}\mathsf{sign}\big(A_{i,j,k}\big) \left(\mathsf{proj}_{\|\cdot\|_{1,1} \leq 1} \left(\sigma|A_{i,:,:}|\right)\right)_{i,j,k},$$

with $A_{i...}$ being the vector obtained by stacking second and third dimensions.

 \bullet $\ell^{\infty,2,1}$ -norm:

$$\left(\mathsf{prox}_{\frac{1}{\sigma}\|\cdot\|_{\infty,2,1}}(A)\right)_{i,j,k} = A_{i,j,k} - \frac{1}{\sigma}\mathsf{sign}\big(A_{i,j,k}\big) \left(\mathsf{proj}_{\|\cdot\|_{1,2} \leq 1} \left(\sigma|A_{i,:,:}|\right)\right)_{i,j,k},$$

where $\operatorname{proj}_{\|\cdot\|_{1,2}<1}$ denotes the projection onto unit $\ell^{1,2}$ -norm ball.

• $\ell^{2,\infty,1}$ -norm:

$$\left(\mathsf{prox}_{\frac{1}{\sigma}\|\cdot\|_{2,\infty,1}}(A)\right)_{i,j,k} = \frac{A_{i,j,k}}{\|A_{i,j,:}\|_2} \max\left(\|A_{i,j,:}\|_2 - \frac{1}{\sigma} \textit{v}_{i,j}, 0\right),$$

where $\textit{v}_{i,j} = \left(\mathsf{prox}_{\|\cdot\|_1 \leq 1} \left(\sigma \left(\|A_{i,j,:}\|_2 \right)_j \right) \right)_{i,i}$, and $\left(\|A_{i,j,:}\|_2 \right)_j$ denotes the vector obtained by stacking $||A_{i,j,:}||_2$ for all j.

Theorem

Let $f: \mathbf{R}^{n \times m} \to \mathbf{R}^n$ be $f_i(u) := \sqrt{\sum_{j=1}^m u_{i,j}^2} = \|u_{i,j}\|_2$, and let $g: \mathbf{R}^n \to \mathbf{R}$ be proper convex function being nondecreasing in each argument. Then

$$\left(\textit{prox}_{\tau(g \circ f)}(u)\right)_{i,j} = \frac{u_{i,j}}{\|u_{i,:}\|_2} \; \max \left(\|u_{i,:}\|_2 - \tau v_i, 0\right),$$

where the v_i 's are the components of the vector $v \in \mathbb{R}^n$ that solves

$$v = \arg\min_{w \in R^n} \frac{1}{2} \left\| w - \frac{1}{\tau} f(u) \right\|^2 + \frac{1}{\tau} g^*(w).$$

Proximity operators of (S^p, ℓ^q) norms

If q = 1, the proximity operator decouples at each pixel:

- Define $M \times C$ submatrix $B_i := (A_{i,j,k})_{j=1,\ldots,M;\ k=1,\ldots,C}$.
- Let $B = B_i^T$, we need to solve at each pixel

$$\min_{D \in R^{M \times C}} \frac{1}{2} \|D - B\|_F^2 + \frac{1}{\sigma} \|D\|_{S^p}.$$

• Computing SVD of $B = U\Sigma_0V^T$ and $\Sigma = U^TDV$, the problem is equivalent to

$$\min_{D \in R^{M \times C}} \frac{1}{2} \|U^T D V - \Sigma_0\|_F^2 + \frac{1}{\sigma} \|U^T D V\|_{S^p} \iff \min_{\Sigma \in R^{r \times r}} \frac{1}{2} \|\Sigma - \Sigma_0\|_F^2 + \frac{1}{\sigma} \|\Sigma\|_{S^p}.$$

• For diagonal matrices $S^p(\Sigma) = \ell^p(\operatorname{diag}(\Sigma))$, so that we finally solve

$$\min_{s \in R^r} \frac{1}{2} \|s - s_0\|_2^2 + \frac{1}{\sigma} \|s\|_p,$$

where $s_0 = \operatorname{diag}(\Sigma_0)$ and $s = \operatorname{diag}(\Sigma)$.

• Only need to compute eigenvalues, Σ_0 , and eigenvectors, V, of $B_i^T B_i$.

- Let $\widehat{\Sigma}$ s.t. diag($\widehat{\Sigma}$) = arg min_s $\frac{1}{2} ||s s_0||_2^2 + \frac{1}{2} ||s||_p$
- The proximity operator $\widehat{D} = \arg\min_{D} \frac{1}{2} ||D B||_2^F + \frac{1}{6} ||D||_{S^P}$ is $\widehat{D} = U\widehat{\Sigma}V^T$.
- Due to $B = U\Sigma_0 V^T$, communitation of diagonal matrices, and $\widehat{\Sigma}\Sigma_0\Sigma_0^{\dagger} = \widehat{\Sigma}$ since $\widehat{\Sigma}$ has at most as many nonzero diagonal entries as Σ_0 –, one has

$$BV = U\Sigma_0 \Rightarrow BV\widehat{\Sigma} = U\Sigma_0\widehat{\Sigma} = U\widehat{\Sigma}\Sigma_0$$

$$\Rightarrow BV\widehat{\Sigma}\Sigma_0^{\dagger} = U\widehat{\Sigma} \Rightarrow BV\widehat{\Sigma}\Sigma_0^{\dagger}V^T = U\widehat{\Sigma}V^T = \widehat{D},$$

where Σ_0^{\dagger} denotes the pseudo-inverse matrix of Σ_0 , i.e.

$$\left(\Sigma_0^\dagger\right)_{i,j} = \left\{ egin{array}{l} \dfrac{1}{(\Sigma_0)_{i,i}} & ext{if } i=j ext{ and } (s_0)_{i,i}
eq 0, \\ 0 & ext{otherwise}. \end{array}
ight.$$

• Therefore, the proximity operator is

$$\widehat{D} = BV\widehat{\Sigma}\Sigma^{\dagger}{}_{0}V^{T},$$

where

- diag(Σ_0) consists of the square root of the eigenvalues of B^TB .
- col(V) are the eigenvectors of B^TB .

Image Denoising

$$\min_{u \in R^{N \times C}} \|Ku\|_{b,a} + \frac{\lambda}{2} \|u - f\|_F^2,$$

where $f \in \mathbb{R}^{N \times C}$ is the noisy image, $\lambda > 0$ the regularization parameter, and $\|\cdot\|_{b,a}$ denotes either an $\ell^{p,q,r}$ norm or a Schatten (S^p,ℓ^q) norm.

The proximity operator of $G(u) = \frac{\lambda}{2} ||u - f||_F^2$ is

$$\operatorname{prox}_{\tau G}(u) = \arg \min_{v \in X} \left\{ \frac{1}{2} \|v - u\|_F^2 + \tau \frac{\lambda}{2} \|v - f\|_F^2 \right\} \ \Leftrightarrow \ \operatorname{prox}_{\tau G}(u) = \frac{u + \tau \lambda f}{1 + \tau \lambda}.$$

Therefore, the solution of $u^{n+1} = \operatorname{prox}_{\tau_n G} (u^n - \tau_n K^T z^n)$ is given by

$$u^{n+1} = \frac{u^n + \tau_n \left(-K^T z^n + \lambda f \right)}{1 + \tau_n \lambda},$$

where $-K^T = \text{div is defined as } \langle -\text{div } z, u \rangle_X = \langle z, Ku \rangle_Y$.

Image Deconvolution

$$\min_{u \in R^{N \times C}} \| Ku \|_{b,a} + \frac{\lambda}{2} \| Au - f \|_F^2,$$

with A being the linear operator modelling the convolution of u with a Gaussian kernel.s

The **proximity operator** of $G(u) = \frac{\lambda}{2} ||Au - f||_F^2$ is

$$\widehat{\boldsymbol{u}} = \arg\min_{\boldsymbol{v} \in \boldsymbol{X}} \left\{ \frac{1}{2} \|\boldsymbol{v} - \boldsymbol{u}\|_F^2 + \tau \frac{\lambda}{2} \|\boldsymbol{A}\boldsymbol{v} - \boldsymbol{f}\|_F^2 \right\} \ \Leftrightarrow \widehat{\boldsymbol{u}} = \left(\boldsymbol{I} + \tau \lambda \boldsymbol{A}^* \boldsymbol{A}\right)^{-1} \left(\boldsymbol{u} + \tau \lambda \boldsymbol{A}^* \boldsymbol{f}\right).$$

Computing $(I + \tau \lambda A^*A)^{-1}$ is huge time consuming in the spatial domain. On the contrary, using FFT, the solution can be efficiently computed as

$$\widehat{u} = \mathcal{F}^{-1}\left(\frac{\mathcal{F}(u) + \tau\lambda\mathcal{F}(A)\mathcal{F}(f)}{1 + \tau\lambda\mathcal{F}(A)^2}\right).$$