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Ill-Posed Inverse Problems in Image Processing

The classical inverse problem in imaging writes as f =  u + ⌘.

Most of them are (highly) ill-posed.

Regularization methods handles ill-posedness by introducing prior knowledge on u,
usually assuming smooth solutions.

In the variational framework the regularized solution is computed as

û = argmin
u

R(u) + �G
f

(u),

where R(u) is the regularization term, G
f

(u) is the data-fidelity term and � � 0 is a
trade-o↵ parameter.
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Regularization Methods Total Variation

Regularization Methods

Total Variation

Consider the inverse problem

min
u2BV(⌦,IR)

R(u) +
�
2
kAu � f k22 ,

with ⌦ ⇢ IR

M , f 2 L

2 (⌦, IR) and a linear operator A : L2(⌦)! L

2(⌦).

A popular regularizer is the total variation [Rudin, Osher, Fatemi ’92]:

R(u) = TV(u) =

Z

⌦

kru(x)k2 dx
| {z }

u2C1(⌦,IR)

= sup
⇠2⌅

⇢Z

⌦

u div ⇠ dx

�

| {z }
u2L1

loc(⌦,IR)

,

where ⌅ =
�
⇠ 2 C

1
c

(⌦, IRM) : k⇠(x)k2  1, 8x 2 ⌦
 
.

TV is the convex conjugate of the indicator function of convex set {div ⇠ : ⇠ 2 ⌅}.

Anisotropic TV follows from using the L

1 norm on the dual variable ⇠.

TV regularizes the image without smoothing the boundaries of the objects, but fails
to recover fine structures and texture.
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Regularization Methods Nonlocal techniques

Regularization Methods

Nonlocal techniques

Nonlocal means denoising algorithm [Buades, Coll, Morel ’05]:

NL[u](x) =
1R

⌦
!
f

(x , y) dy

Z

⌦

!
f

(x , y)u(y) dy

Weight distribution !
f

: ⌦⇥ ⌦! IR controlled by a filtering parameter h > 0:

!
f

(x , y) = e

� d⇢(f (x),f (y))

h

2 ,

with patch-based distance:

d⇢(f (x), f (y)) =

Z

⌦

G⇢(t)|f (x + t)� f (y + t)|2dt.

Regularity assumption: natural images are self-similar.
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Regularization Methods Nonlocal techniques

Real image demosaicking
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Regularization Methods Nonlocal techniques

Real image denoising
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Regularization Methods Nonlocal techniques

Video denoising
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Regularization Methods Nonlocal techniques

Neighborhood filters as nonlocal regularization [Gilboa, Osher ’08]:

R(u) =

Z

⌦

Z

⌦

(u(y)� u(x))2 !
f

(x , y) dy dx .

Nonlocal operators with non-symmetric weights [D., Buades, Coll, Sbert ’14]:

r!u(x , y) = (u(y)� u(x))
p

!
f

(x , y),

(div!v) (x) =

Z

⌦

⇣
v(x , y)

p
!
f

(x , y)� v(y , x)
p

!
f

(y , x)
⌘
dy .

The nonlocal total variation is defined as

R(u) = NLTV(u) =

Z

⌦

kr!u(x)k2 dx = sup
⇠2⌅

⇢Z

⌦

u div! ⇠ dx

�
,

where ⌅ =
�
⇠ 2 C

1
c

(⌦⇥ ⌦, IRM) : k⇠(x , ·)k2  1, 8x 2 ⌦
 
.

How can we generalize TV and NLTV to vector-valued images?
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Vectorial Total Variation Classical approaches

Vectorial Total Variation

Classical approaches

Consider a vector-valued image u : ⌦! IR

c with C spectral channels.

Channel-wise summation [Blomgren, Chan ’98]:

VTV(u) =
CX

k=1

TV(u
k

) = sup
(⇠1,...,⇠C

)2⌅

(
CX

k=1

Z

⌦

u

k

div ⇠
k

dx

)
,

where ⌅ =
�
⇠ 2 C

1
c

(⌦, IRM ⇥ · · ·⇥ IR

M) : k⇠
k

(x)k  1, 8x 2 ⌦, 8k = 1, . . . ,C
 
.

Global channel coupling [Sapiro, Ringach ’96]:

VTV(u) =

Z

⌦

kruk
F

dx = sup
⇠=(⇠1,...,⇠C

)2⌅

(
CX

k=1

Z

⌦

u

k

div ⇠
k

dx

)
,

where ⌅ =
�
⇠ 2 C

1
c

(⌦, IRM⇥C ) : k⇠(x)k  1, 8x 2 ⌦
 
.

Spectral norm coupling [Goldluecke, Strekalovskiy, Cremers ’12]:

VTV(u) =

Z

⌦

kruk�1 dx = sup
(⇠,⌘)2⌅

(
CX

k=1

Z

⌦

u

k

div (⌘
k

⇠) dx

)
,

where ⌅ =
�
⇠ 2 C

1
c

(⌦, IRM),⌘ 2 C

1
c

(⌦, IRC ) : k⇠(x)k  1, k⌘(x)k  1, 8x 2 ⌦
 
.
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Vectorial Total Variation Classical approaches
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F

dx
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Vectorial Total Variation Which is the best VTV for vector-valued images?

Vectorial Total Variation

Which is the best VTV for vector-valued images?

Vectorial Total Variation

8
>>>><

>>>>:

coupling spatial derivatives

(
isotropic di↵usion

anisotropic di↵usion

coupling color channels
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Collaborative Total Variation for Multi-Channel Images

Proposed framework

Represent an image u with N pixels and C spectral channels by the matrix

u = (u1, . . . , uC ) 2 IR

N⇥C s.t. u

k

2 IR

N , 8k 2 {1, . . . ,C}.

The Jacobi matrix at each pixel defines a 3D tensor given by

Du ⌘ (Du)
i,j,k 2 IR

N⇥M⇥C ,

with M directional derivatives.

Regularize Du by penalizing each dimension with a di↵erent norm.
Collaborative Regularization in Multi-Channel Variational Imaging J. Duran 14 / 43



Collaborative Total Variation for Multi-Channel Images Proposed framework

Collaborative Total Variation for Multi-Channel Images

Proposed framework

Represent an image u with N pixels and C spectral channels by the matrix

u = (u1, . . . , uC ) 2 IR

N⇥C s.t. u

k

2 IR

N , 8k 2 {1, . . . ,C}.

The Jacobi matrix at each pixel defines a 3D tensor given by

Du ⌘ (Du)
i,j,k 2 IR

N⇥M⇥C ,

with M directional derivatives.

Regularize Du by penalizing each dimension with a di↵erent norm.
Collaborative Regularization in Multi-Channel Variational Imaging J. Duran 14 / 43



Collaborative Total Variation for Multi-Channel Images Proposed framework

Collaborative Total Variation for Multi-Channel Images

Proposed framework

Represent an image u with N pixels and C spectral channels by the matrix

u = (u1, . . . , uC ) 2 IR

N⇥C s.t. u

k

2 IR

N , 8k 2 {1, . . . ,C}.

The Jacobi matrix at each pixel defines a 3D tensor given by

Du ⌘ (Du)
i,j,k 2 IR

N⇥M⇥C ,

with M directional derivatives.

Regularize Du by penalizing each dimension with a di↵erent norm.
Collaborative Regularization in Multi-Channel Variational Imaging J. Duran 14 / 43



Collaborative Total Variation for Multi-Channel Images Proposed framework

Example (Local gradient operator)

Consider a color image u 2 IR

N⇥3
and the local gradient computed at each pixel via

forward di↵erences. Then, the submatrix obtained by fixing the n�th pixel is

 
u

n+1,1 � u

n,1 u

n+1,2 � u

n,2 u

n+1,3 � u

n,3

u

n+N

w

,1 � u

n,1 u

n+N

w

,2 � u

n,2 u

n+N

w

,3 � u

n,3

!

Example (Nonlocal gradient operator)

Consider a color image u 2 IR

4⇥3
and compute the nonlocal gradient. If we fix the k�th

channel, the submatrix along pixel and derivative dimensions is

0

BBB@

0 !1,2 (u1,k � u2,k) !1,3 (u1,k � u3,k) !1,4 (u1,k � u4,k)
!2,1 (u2,k � u1,k) 0 !2,3 (u2,k � u3,k) !2,4 (u2,k � u4,k)
!3,1 (u3,k � u1,k) !3,2 (u3,k � u2,k) 0 !3,4 (u3,k � u4,k)
!4,1 (u4,k � u1,k) !4,2 (u4,k � u2,k) !4,3 (u4,k � u3,k) 0

1

CCCA

In general, the nonlocal 3D tensor is of size N ⇥N ⇥C . However, ! is usually sparse.

Local gradient is a particular case of the nonlocal gradient by taking

!
i,j =

(
1 if j is the right or lower neighbour of i ,
0 otherwise.
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Collaborative Total Variation for Multi-Channel Images

Collaborative sparsity enforcing norms

The Jacobi matrix at each pixel defines a 3D tensor which can be regularized by
penalizing each of its dimensions with a di↵erent norm.

Definition

Let k · k
a

: IRN ! IR be any vector norm and k · k~
b

: IRM⇥C ! IR any matrix norm. Then,
the collaborative norm of A 2 IR

N⇥M⇥C is defined as

kAk~
b,a = kvka, with v

i

= kA
i,:,;k~

b

, 8i 2 {1, . . . ,N},

where A

i,:,: is the submatrix obtained by stacking the second and third dimensions of A
at ith position.

Example (`p,q,r norms)

Let A 2 IR

N⇥M⇥C

and consider k · k~
b

= `p,q and k · k
a

= `r . Then, the `p,q,r norm is

kAk
p,q,r =

0

B@
NX

i=1

0

@
MX

j=1

 
CX

k=1

|A
i,j,k |p

!
q/p
1

A
r/q
1

CA

1/r
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Example ((Sp, `q) norm)

Let A 2 IR

N⇥M⇥C

and consider k · k~
b

= S

p

and k · k
a

= `q. Then the (Sp, `q) norm is

(Sp, `q)(A) =

0

BB@
NX

i=1

��������

0

BB@

A

i,1,1 · · · A

i,1,C

.

.

.

.

.

.

.

.

.

A

i,M,1 · · · A

i,M,C

1

CCA

��������

q

S

p

1

CCA

1/q

Schatten p�norms:

Fix a pixel location and consider the submatrix obtained by looking at the
channel and derivative dimensions.

Compute SVD and penalize the singular values with an `p�norm:
- p = 1 ! nuclear norm, a convex relaxation of rank minimization.
- p = 2 ! Frobenius norm.
- p =1 ! penalizing the largest singular value.

CTV norms are non invariant to permutations of the dimensions:

`p,q,r (col , der , pix) and (Sp(col , der), `q(pix))

Any transform along each of the dimensions, in particular, color space transforms,
can be applied before CTV.
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A unified framework for Vectorial Total Variation

Continuous Formulation Our Framework
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Which is the Best Channel Coupling?

Inter-channel correlation

Noisy `1 coupling

`2 coupling `1 coupling
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Which is the Best Channel Coupling?

Singular vector analysis

Definition

Let F be a convex regularization s.t. @F (u) 6= ; at any u 2 domF . Then, every function
u� s.t. ku�k = 1 and �u� 2 @F (u�) is called a singular vector of F with singular value �.

A signal can be restored well if it is a singular vector of F [Benning, Burger ’13].

Singular vectors of CTV:

u 2 @kDuk~
b,a , u = D

>z, with z 2 @
Du

�
kDuk~

b,a

�
.

The functions whose divergence generates singular vectors reduce to

z

1
k

(x1, x2) = c

1
k

l

1
k

(x1) and z

2
k

(x1, x2) = c

2
k

l

2
k

(x2),

where c

r

k

2 IR, |l r
k

(x)|  1, l r
k

piecewise linear and linearity changes i↵ |l r
k

(x)| = 1.
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CTV Singular Vectors Properties
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k

(x1, x2) = �c

1
k

D1l
1
k

(x1) � c

2
k

D2l
2
k

(x2) l

r

k

depend on k and c

r

k

2 {0,±1}
`2,1,1 u

k

(x1, x2) = �c

1
k

D1l
1(x1) � c

2
k

D2l
2(x2) l

r do not depend on k and kcrk2 = 1
`1,1,1

u

k

(x1, x2) = �c

1
k

D1l
1(x1) � c

2
k

D2l
2(x2) l

r do not depend on k and c

r

k

2 {0,±1}

`1,1,1 `2,1,1 `1,1,1

The `1 norm introduces the strongest channel coupling!
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Minimization using the Primal-Dual Algoritm

Minimization using the Primal-Dual Algoritm

Primal formulation:

min
u2IR

N⇥C

F (u) + G (u) = kDuk~
b,a + G (u) .

Since F is closed and l.s.c., then

F (Du) = F

⇤⇤(Du) = sup
p2IR

N⇥M⇥C

hDu, pi � F

⇤ (p) .

If F = k · k, then its Legendre-Fenchel transform is the indicator function of the unit
dual norm ball:

F

⇤ (p) =

(
0 if kpk~

b

⇤,a⇤  1,

+1 otherwise.

)
= Xk·k~

b

⇤,a⇤1 (p) .

Theorem

Let k · k~
b

⇤ and k · k
a

⇤
be the dual norms to k · k~

b

and k · k
a

, respectively. Consider

A 2 IR

N⇥M⇥C

and define v 2 IR

N

such that v

i

= kA
i,:,:k~

b

⇤ for each i 2 {1, . . . ,N}. If
kvk

a

⇤
only depends on the absolute values of v

0
i

s, then the dual norm to k · k~
b,a is

kAk~
b

⇤,a⇤ = kvk
a

⇤ , with v

i

= kA
i,:,;k~

b

⇤ , 8i 2 {1, . . . ,N}.
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Minimization using the Primal-Dual Algoritm

Saddle-point formulation:

min
u2IR

N⇥C

max
p2IR

N⇥M⇥C

hDu, pi � F

⇤ (p) + G (u) ,

with optimality conditions

0 2 @G (bu) + D

>bp and 0 2 @F ⇤ (bp)� D

bu.

Primal-Dual algorithm [Chambolle, Pock ’11]:

un+1 = prox⌧
n

G

�
un � ⌧

n

D

>pn

�
 Gradient descent step in u

ūn+1 = un+1 +
�
un+1 � un

�
,  Over-relaxation step in u

pn+1 = prox�
n

F

⇤
�
pn + �

n

Dūn+1
�
 Gradient ascent step in p

where ⌧
n

,�
n

> 0 are adaptive step-size parameters and

prox↵f

(x) = argmin
y

⇢
1
2↵
ky � xk22 + f (y)

�
.

The proximity operator of F ⇤ = Xk·k~
b

⇤,a⇤1 is the projection onto the unit dual norm

ball
ep = prox�F

⇤ (p) = projk·k~
b

⇤,a⇤1(p).
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Experimental Results Image denoising

Experimental Results

Image denoising

Noisy (� = 30) `1,1,1(col , der , pix)
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Experimental Results Image denoising

Experimental Results

Image denoising

Noisy (� = 30) `2,1,1(col , der , pix)
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Experimental Results

Image denoising

Noisy (� = 30) `2,1,1(der , col , pix)
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Experimental Results Image denoising

Behaviour of CTV methods w.r.t. changing regularization parameter
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Experimental Results Image denoising

Image denoising on Kodak dataset

Noisy `1,1,1 `2,1,1 `2,2,1 `1,1,1 `1,2,1 `1,1,1 `2,1,1
S

1, `1 S

1, `1

1 24.78 28.14 29.07 28.51 29.90 29.19 28.60 29.07 29.20 27.96
2 24.76 28.54 29.48 29.22 30.18 29.87 29.36 29.66 29.83 28.62
3 24.80 29.20 30.15 29.81 30.85 30.51 29.84 30.25 30.33 29.24
4 24.68 30.92 32.22 31.80 32.73 32.71 31.54 32.13 32.32 31.01
5 24.71 31.50 32.75 32.41 33.13 33.30 32.10 32.64 32.81 31.65
6 24.72 27.36 28.19 27.98 29.01 28.64 28.29 28.52 28.59 27.47
7 24.71 29.46 30.39 30.12 30.86 30.71 29.99 30.35 30.57 29.53
8 24.96 31.08 32.10 31.84 32.41 32.40 31.62 32.02 32.20 31.22
9 25.68 30.92 31.74 31.54 32.10 32.00 31.49 31.78 31.85 31.11
10 24.66 29.75 30.81 30.49 31.48 31.29 30.52 30.94 31.05 29.84
11 24.66 30.14 31.10 30.84 31.49 31.46 30.68 31.07 31.22 30.25
12 24.71 31.85 33.15 32.84 33.45 33.69 32.47 33.03 33.25 32.05

24.82 29.91 30.93 30.62 31.47 31.31 30.54 30.96 31.10 30.00
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Experimental Results Image denoising

Image denoising on BSDS dataset

Noisy `1,1,1 `2,1,1 `2,2,1 `1,1,1 `1,2,1 `1,1,1 `2,1,1 �
S

1, `1
� �

S

1, `1
�

1 24.88 29.70 30.56 30.41 30.82 30.72 30.17 30.46 30.80 29.85
2 25.02 30.01 30.98 30.52 31.54 31.03 30.44 30.87 31.12 29.95
3 25.04 30.26 31.03 30.86 31.43 31.26 30.78 31.04 31.24 30.41
4 24.96 32.59 33.73 33.66 33.99 34.01 33.36 33.72 34.00 32.93
5 24.72 30.16 30.88 30.75 31.18 31.07 30.62 30.87 31.01 30.32
6 25.03 29.24 30.19 29.77 30.89 30.36 29.84 30.22 30.37 29.27
7 24.65 29.12 30.11 29.74 30.88 30.44 29.81 30.22 30.32 29.15
8 24.71 30.57 31.62 31.51 32.11 32.09 31.44 31.75 31.92 30.82
9 24.70 31.05 31.94 31.75 32.11 32.01 31.32 31.69 32.04 31.20
10 25.42 31.19 31.93 31.87 31.90 31.86 31.34 31.57 32.10 31.37
11 24.72 28.06 29.06 28.92 30.02 29.69 29.48 29.60 29.64 28.36
12 24.64 30.82 31.86 31.58 32.19 31.97 31.20 31.67 32.03 30.89

24.87 30.23 31.16 30.95 31.59 31.38 30.82 31.14 31.38 30.38
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Experimental Results Image denoising

Image denoising on McMaster dataset

Noisy `1,1,1 `2,1,1 `2,2,1 `1,1,1 `1,2,1 `1,1,1 `2,1,1
S

1, `1 S

1, `1

1 25.32 29.29 29.83 29.64 29.74 29.52 28.97 29.25 29.98 29.16
2 24.90 27.80 28.41 28.26 28.43 28.32 27.80 28.02 28.60 27.75
3 25.46 30.44 30.96 30.84 30.78 30.66 30.16 30.39 31.17 30.33
4 25.14 29.26 29.91 29.75 29.95 29.82 29.30 29.54 30.13 29.22
5 25.62 31.11 31.46 31.40 30.97 30.84 30.33 30.55 31.64 30.89
6 25.01 29.83 30.49 30.32 30.34 30.13 29.55 29.84 30.74 29.68
7 25.21 30.96 31.63 31.48 31.41 31.21 30.66 30.98 31.80 30.87
8 25.34 31.98 32.72 32.60 32.50 32.30 31.78 32.15 32.88 31.99
9 25.21 32.54 33.36 33.32 33.08 32.93 32.50 32.85 33.53 32.70
10 24.69 32.26 33.06 33.02 32.70 32.54 32.10 32.49 33.20 32.37
11 25.55 30.21 30.85 30.75 30.87 30.73 30.35 30.59 30.98 30.29
12 25.21 30.58 31.18 30.99 31.11 30.87 30.36 30.69 31.30 30.50

25.22 30.52 31.16 31.03 30.99 30.82 30.32 30.61 31.33 30.48
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Experimental Results Image denoising

Image denoising on ARRI dataset

Noisy `1,1,1 `2,1,1 `2,2,1 `1,1,1 `1,2,1 `1,1,1 `2,1,1 �
S

1, `1
� �

S

1, `1
�

1 24.85 30.93 31.79 31.61 31.94 31.79 31.29 31.63 31.90 31.03
2 24.79 33.26 34.42 34.06 34.55 34.40 33.54 34.08 34.43 33.33
3 24.84 33.89 34.81 34.83 34.94 35.23 34.69 34.89 34.99 34.33
4 25.23 34.61 35.40 35.40 35.43 35.59 35.16 35.37 35.49 35.01
5 24.66 33.43 34.18 34.12 34.13 34.24 33.76 34.04 34.20 33.70
6 24.74 29.33 30.23 30.11 30.35 30.27 29.80 30.10 30.46 29.53
7 25.21 33.17 33.81 33.68 33.56 33.50 32.95 33.28 33.81 33.25
8 24.65 31.30 32.19 31.82 32.36 31.95 31.25 31.75 32.18 31.18

24.87 32.49 33.35 33.20 33.41 33.37 32.81 33.14 33.43 32.67
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Experimental Results Image denoising: local vs nonlocal CTV

Experimental Results

Image denoising: local vs nonlocal CTV

Noisy `1,1,1 � TV, PSNR = 33.60
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Experimental Results Image denoising: local vs nonlocal CTV

Experimental Results

Image denoising: local vs nonlocal CTV

Noisy `1,1,1 � NLTV, PSNR = 35.41
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Experimental Results Image inpainting

Experimental Results

Image inpainting

Noisy (� = 30) `1,1,1(col , der , pix)
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Experimental Results Image inpainting

Experimental Results

Image inpainting

Noisy (� = 30) `2,1,1(der , col , pix)
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Future Prospects Video super-resolution
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Future Prospects Video super-resolution

Bicubic interpolation
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Future Prospects Video super-resolution

Upsampled stage
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Future Prospects Video super-resolution

Upsampled + deblurred stage
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Future Prospects Video super-resolution

Reference
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Future Prospects Video super-resolution

Dong et al. ’16
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Future Prospects Video super-resolution

Unger et al. ’11
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Future Prospects Video super-resolution

Liao et al. ’15
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Future Prospects Video super-resolution

Ours
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Future Prospects Hyperspectral data fusion

Future Prospects

Hyperspectral data fusion
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Future Prospects Spectral super-resolution

Future Prospects

Spectral super-resolution
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Future Prospects Light-field imaging

Future Prospects

Light-field imaging
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Future Prospects Light-field imaging

Image Estimated depth
Collaborative Regularization in Multi-Channel Variational Imaging J. Duran 41 / 43



Conclusions

Conclusions

We introduced a unified framework for Vectorial Total Variation based on the
collaborative enforcing norms `p,q,r and (Sp, `q).

Depending on the amount of inter-channel correlation, di↵erent collaborative norms
are suited.

`1,1,1 and
�
S

1, `1
�
best exploit inter-channel correlations.

We proposed respective Nonlocal Collaborative TV.

We proposed the primal-dual algorithm to solve the minimization problem.
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Proximity operator of `p,q,r norms

`1,1,1�norm:
⇣
prox 1

� k·k1,1,1(A)
⌘

i,j,k
= max

✓
|A

i,j,k |�
1
�
, 0

◆
sign

�
A

i,j,k

�
.

`2,1,1�norm:
⇣
prox 1

� k·k2,1,1(A)
⌘

i,j,k
= max

✓
kA

i,j,:k2 �
1
�
, 0

◆
A

i,j,k

kA
i,j,:k2

.

`2,2,1�norm:
⇣
prox 1

� k·k2,2,1(A)
⌘

i,j,k
= max

✓
kA

i,:,:k2,2 �
1
�
, 0

◆
A

i,j,k

kA
i,:,:k2,2

.

`1,1,1�norm decouples at each j and k so we are left with an `1 problem computed
by means of the projection onto unit `1 dual ball:

⇣
prox 1

� k·k1,1,1
(A)
⌘

i,j,k
= A

i,j,k �
1
�
sign

�
A

i,j,k

� ⇣
projk·k11 (�|Ai,j,:|)

⌘

i,j,k
,

where A

i,j,: denotes the vector obtained by staking third dimension.
`1,1,1�norm:

⇣
prox 1

� k·k1,1,1
(A)
⌘

i,j,k
= A

i,j,k �
1
�
sign

�
A

i,j,k

� ⇣
projk·k1,11 (�|Ai,:,:|)

⌘

i,j,k
,

with A

i,:,: being the vector obtained by stacking second and third dimensions.
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`1,2,1�norm:
⇣
prox 1

� k·k1,2,1
(A)
⌘

i,j,k
= A

i,j,k �
1
�
sign

�
A

i,j,k

� ⇣
projk·k1,21 (�|Ai,:,:|)

⌘

i,j,k
,

where projk·k1,21 denotes the projection onto unit `1,2�norm ball.

`2,1,1�norm:
⇣
prox 1

� k·k2,1,1
(A)
⌘

i,j,k
=

A

i,j,k

kA
i,j,:k2

max

✓
kA

i,j,:k2 �
1
�
v

i,j , 0

◆
,

where v

i,j =
⇣
proxk·k11

⇣
�
�
kA

i,j,:k2
�
j

⌘⌘

i,j
, and

�
kA

i,j,:k2
�
j

denotes the vector

obtained by stacking kA
i,j,:k2 for all j .

Theorem

Let f : IRn⇥m ! IR

n

be f

i

(u) :=
qP

m

j=1 u
2
i,j = kui,:k2, and let g : IRn ! IR be proper

convex function being nondecreasing in each argument. Then

⇣
prox⌧(g�f )(u)

⌘

i,j
=

u

i,j

ku
i,:k2

max
�
ku

i,:k2 � ⌧v
i

, 0
�
,

where the v

i

’s are the components of the vector v 2 IR

n

that solves

v = arg min
w2IR

n

1
2

����w �
1
⌧
f (u)

����
2

+
1
⌧
g

⇤(w).
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Proximity operators of (Sp, `q) norms

If q = 1, the proximity operator decouples at each pixel:

Define M ⇥ C submatrix B

i

:= (A
i,j,k)

j=1,...,M; k=1,...,C .

Let B = B

T

i

, we need to solve at each pixel

min
D2IR

M⇥C

1
2
kD � Bk2

F

+
1
�
kDk

S

p .

Computing SVD of B = U⌃0V
T and ⌃ = U

T

DV , the problem is equivalent to

min
D2IR

M⇥C

1
2
kUT

DV � ⌃0k2
F

+
1
�
kUT

DV k
S

p , min
⌃2IR

r⇥r

1
2
k⌃� ⌃0k2

F

+
1
�
k⌃k

S

p .

For diagonal matrices Sp(⌃) = `p
�
diag(⌃)

�
, so that we finally solve

min
s2IR

r

1
2
ks � s0k22 +

1
�
ksk

p

,

where s0 = diag(⌃0) and s = diag(⌃).

Only need to compute eigenvalues, ⌃0, and eigenvectors, V , of BT

i

B

i

.
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Let b⌃ s.t. diag(b⌃) = argmin
s

1
2ks � s0k22 + 1

� kskp
The proximity operator bD = argmin

D

1
2kD � BkF2 + 1

� kDkSp is bD = U

b⌃V T .

Due to B = U⌃0V
T , communitation of diagonal matrices, and b⌃⌃0⌃

†
0 = b⌃ – since

b⌃ has at most as many nonzero diagonal entries as ⌃0 –, one has

BV = U⌃0 ) BV

b⌃ = U⌃0
b⌃ = U

b⌃⌃0

) BV

b⌃⌃†
0 = U

b⌃ ) BV

b⌃⌃†
0V

T = U

b⌃V T = b
D,

where ⌃†
0 denotes the pseudo-inverse matrix of ⌃0, i.e.

�
⌃†

0

�
i,j

=

8
<

:

1
(⌃0)i,i

if i = j and (s0)i,i 6= 0,

0 otherwise.

Therefore, the proximity operator is

b
D = BV

b⌃⌃†
0V

T ,

where

- diag(⌃0) consists of the square root of the eigenvalues of BT

B.
- col(V ) are the eigenvectors of BT

B.
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Image Denoising

min
u2IR

N⇥C

kKuk
b,a +

�
2
ku � f k2

F

,

where f 2 IR

N⇥C is the noisy image, � > 0 the regularization parameter, and k · k
b,a

denotes either an `p,q,r norm or a Schatten (Sp, `q) norm.

The proximity operator of G(u) = �
2 ku � f k2

F

is

prox⌧G (u) = argmin
v2X

⇢
1
2
kv � uk2

F

+ ⌧
�
2
kv � f k2

F

�
, prox⌧G (u) =

u + ⌧�f
1 + ⌧�

.

Therefore, the solution of un+1 = prox⌧
n

G

�
u

n � ⌧
n

K

T

z

n

�
is given by

u

n+1 =
u

n + ⌧
n

�
�KT

z

n + �f
�

1 + ⌧
n

�
,

where �KT = div is defined as h�div z , ui
X

= hz ,Kui
Y

.
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Image Deconvolution

min
u2IR

N⇥C

kKuk
b,a +

�
2
kAu � f k2

F

,

with A being the linear operator modelling the convolution of u with a Gaussian kernel.s

The proximity operator of G(u) = �
2 kAu � f k2

F

is

b
u = argmin

v2X

⇢
1
2
kv � uk2

F

+ ⌧
�
2
kAv � f k2

F

�
, b

u = (I + ⌧�A⇤
A)�1 (u + ⌧�A⇤

f ) .

Computing (I + ⌧�A⇤
A)�1 is huge time consuming in the spatial domain. On the

contrary, using FFT, the solution can be e�ciently computed as

b
u = F�1

✓
F(u) + ⌧�F(A)F(f )

1 + ⌧�F(A)2

◆
.

Collaborative Regularization in Multi-Channel Variational Imaging J. Duran 6 / 6


	Ill-Posed Inverse Problems in Image Processing
	Regularization Methods
	Total Variation
	Nonlocal techniques

	Vectorial Total Variation
	Classical approaches
	Which is the best VTV for vector-valued images?

	Collaborative Total Variation for Multi-Channel Images
	Proposed framework
	Collaborative sparsity enforcing norms
	A unified framework for Vectorial Total Variation

	Which is the Best Channel Coupling?
	Inter-channel correlation
	Singular vector analysis

	Minimization using the Primal-Dual Algoritm
	Experimental Results
	Image denoising
	Image denoising: local vs nonlocal CTV
	Image inpainting

	Future Prospects
	Video super-resolution
	Hyperspectral data fusion
	Spectral super-resolution
	Light-field imaging

	Conclusions
	Appendix

